ZSS Manager: User Guide

Copyright © 2013-2021 Zumero LLC

Table of Contents

O | L oo [0 1o o PP 2
B2 O 1 o s - e 2
2.1. CoNNECt t0 ZSS SErver'S Dal@haSeuvviiiiieeiiii et 2
2.2, Create A DBHRIlE ... 3
2.3. Create a User and Set PErMISSIONScccevuiiiiiiiie ettt e e eaaes 5
24. Add aTable to the DBRIIEiiiiiiieee e 7
2.5. REAOY 10 SYNC! oot 9
3. DBFIIES, DEFINE ...ttt e e et e aaan s 11
4. The ZSS Manager WINCOWiiiiiiiieiiii e et e et e e e e 12
4.1, The SEECted DBFIlE .. .cceeiieie e 12
4.2. Add aTable to the Current DBRIIEc.uuiiiiiiiic e 12
4.3. The Synchronized TableS liStoooeeiiiii e 12
4.4, The Test CHENt WINAOWiiiiiiiiiiii e eeer e eees 15
5. Customizing SYNCArONIZALIONSccouuuuiiieii e 16
5.1. Authentication and PEMISSIONSuiiiiuiiieiiii et 16
I 11 = £ TSP SPPPTINN 23
5.3. Constraint Violations and Conflict RESOIULIONc..uuiiiiiiiiiiiiii e 26
6. SQL Server CONSIAEIEHIONScvuueiiteeei e et et e et e e et e e e e et e e e e e e e e retn e e een e eean e raneeanns 34
B.1. Create DBRIIE ... 34
6.2. Add TabIES t0 DBRIIE ...c.uuiiiiiiiie e 34
6.3. StOP SYNCING @ TADIE «.ccveiieie e e 37
B.4. DEEE DBFIIE ... 38
B.5. PEIMISSIONS ...ttt et 38
B.6. SQL SEIVEr THOUEIS .eevuieeeiti ettt ettt e et e et e ettt e e et e e e et e e e eba s 38
6.7. Database SChema ChanQeSu it e s 39
6.8. Data Type Conversion and Limitationsccouuiiiiiiiiiiiii e 41
7. AGVANCED TOPICS ..uueieitie ettt et e et e e ettt e e ettt e e e e et e e e e ett e e e eetb e e e eabeaeeeee 45
7.1. Multiple Database CONfigUIAtioNScccuuuieiiiiiieieii et 45
7.2. Migrating ZSS Configuration DEtWEEN SEIVEISviiiiiiiiiii e 48
7.3 AUAIT TTAIS ..ttt e et et een 53
T4, THE SEIVEN LOQ w.tueieiii ettt ettt ettt e et e e et bt e e e et e e e et e e e eeab e eeees 54
T.5.UPGratding ZSS ... 54
7.6. Editing DBFile CONNECLION SHNGSoiieiieeiii et 55
7.7. Recovering from a Database ROHDACKoviiiiiiiiiii e 57
7.8. Azure Active Directory AUhENtiCaLIONcc.uuiiiiiiiiiiii e 58
8. PerformanCe TUNIMGoieiii et ettt ettt e e et e e eab e e e eaaa e e eenaes 60
8.1 PUrGING HISIOMY ..o et 60
8.2. Adding Indexes to "z$old" TabIEScceeiiiiiiiiiie e 62
9. TrOUBIESNOOLING .. eevteeeiit et e e et et e e ettt e e et e e e eaba e eaees 62
9.1. Troubleshooting EFTOr 500cccuuuieiiiuiieeiiiie ettt 62
9.2. Troubleshooting LiCENSE EFTOISccuuuueiiiiiieeeiiie ettt e s 63

ZSS Manager: User Guide

1. Introduction

This document was generated 2021-03-18 11:06:41. It explains how to install and use ZSS Manager to
configure SQL Server databases for Zumero synchronization.

ZSS Manager is acomponent of Zumero for SQL Server. It allows you to configure an existing SQL
Server database for use with Zumero. In combination with the ZSS Server and ZSS Client SDK, you can
replicate and sync your data among multiple devices.

Using Zumero for SQL Server for the first time typically involves these steps:

1. Install ZSS Manager on a Windows devel opment machine.
2. Use ZSS Manager to configure the SQL Server database.
3. Ingtall the Zumero Server on aWindows Server. Configure it to connect to your database.

4. Create a simple client application, or use the ZSS Manager Test Client to perform atest sync
against the server.

This guide focuses on ZSS Manager and step 2.
ZSS Manager works with:

* Windows 7 and |ater
* SQL Server 2008 R2 and later

This document assumes the reader has familiarity with SQL Server as a developer or database
administrator.

2. Quick Start

Before getting into details, let's take a quick tour of ZSS Manager's features and functionality.

2.1. Connect to ZSS Server's Database

Connect to SQL Server the same way you would with SQL Server Management Studio:

F4 Connect to SOL Server *

Connect to the SQL Server specified in your Zumero Server configuration.

Server Name: |||:n::a|hDSt - |
Authentication: SQL Server Authertication =

User Mame: |sa |

Password: |.uuu| |

Cacs

Note

Y ou can always connect to adifferent ZSS Server viathe File/ Change Zumero Server... menu. !

1See the Multi ple Database Configurations section for more details on using ZSS Manager with multiple databases and multiple servers.

ZSS Manager: User Guide

If thisis your first time running ZSS Manager, you'll need to select a database once the connection has
been opened. Choose a database from the drop-down list, then click Choose.

Fd Select the Primary Zurnero Database — d x
Which database should Zumeno use to store its log files and database mappings 7

This should be the same database specified in your Zumero Server configuration.

demo w

Select Database

You're now greeted by the main window. This window is where you will configure settings for Zumero
synchronization.

Fd 755 Manager - O d
Eile DBFile Tools Help
14 # CreateaDBFile “y (7]
A DEFile is a collection of SGL Server database tables that are synced together into a Current DEFile:
single SGLite database on the client device.
Synchronized Tables
Table Schema lzsues
License Status: Expires 2113-11-18 2 Connected: localhost{demo)

2.2. Create a DBFile

DBFilesare explained in more detail in the DBFile section. For the purposes of this quick start, understand
that:

1. A DBFileisacontainer for tables, and
2. We need at least one DBFile to sync our data via Zumero.

Select Create a DBFile... from the DBFile menu (or click the Create a DBFile toolbar button.

ZSS Manager: User Guide

Fd Create a DBFile ? *

A DEFile is a collection of SQL Server tables that will be synched to a single SOLite database on a
client device.

Flease enter a name for the new DBFile. DBFile names must:

- Contain only unaccented lowercase letters, digits, and underscore) characters.
- Begin with a letter.

DBFile Mame: |dem-:-| |

o

Once you've entered a valid DBFile name, the Next button becomes active.

2.2.1. Choosing the host database
ZSS Manager needs to know what database contains the tables you'll be syncing. The data may reside
in the same database as the ZSS Server configuration data, another database on the same server, or on

another server altogether.

In this example, we're using data from the same database.

Fd Create a DEFile ? *

Which database contains the tables you wish to include in the "demo” DBFile?

(@) The "demo" database

() Another database on the "localhost” server

() Adatabase on another server:
Choose SQL Server

Prev Cancel

2.2.2. Create the DBFile

The DBFile wizard now reiterates what will happen when you click Next:

ZSS Manager: User Guide

Fd Create a DBFile

Selecting "Mexdt" will:

1. Create a new DEFile named "demo”
2. . inthe "demo" databasze
3. ... onthe "localhost™ SQL Server.

Prev Cancel

After the DBFileis created, we can next Add a Table or Create a User and Set Permissions:
Fd Create a DEFile

? *
The DEFile was created successfully. Here are some next steps you may wish to take:

Add tables to the dema DBFile

Corfigure users and pemissions for the demo DBFile

2.3. Create a User and Set Permissions

Now that we have a DBFile, the User Management button is enabled in the main window. Click it to
manage users and set permissions.

ZSS Manager: User Guide

Users & Groups

Authentication Source:

Database. (DBFile: derno, Users: users, Groups: zumero.groups)

Users Groups
Add... Modify.. Delete t L Add. Modify. Delete
Mame Marme
l"’n'-An)r Authenticated User
ﬂAnynne
€ > < >

Thefirst time you access user management for agiven SQL Server database, you'll be prompted to create
the users table and the groups table. Click OK to continue.

Below, we simply allow full accessto everything, by anyone. For more details on setting up realistic users
and permissions, see Authentication, Users, Groups, and Permissions.

To alow full access for anonymous sync requests, we double-click the Anyone group and set al 4
permissionsto Allow:

ZSS Manager: User Guide

Modify Group

Group name:

Anyone

Group Members

Anyone
Madify...

Permissions
DB File: demo
Synchronized Table:
(Any) ~

Add Rows Allow

Delete Rows Allow

Madify Rows Allow

DT o

Full
User may retrieve new data from the server.

2.4. Add a Table to the DBFile
In the main window, click the Add a Table... button to select the tables that you want to synchronize.

Select the checkbox beside each of the tables that you want to add to the DBFile.
P4 Add Tables to DEFile b4

The demo dbfile is located in the SQL server's demo database. All tables in that DEFile must be in that
database as well. A SGL Server table can only be synchronized in one DBFile.

Table Name Schema Status
chemical_glements dbo
[] presidents dbo
[scratch dbo

Prev Cancel

ZSS Manager: User Guide

The Table Considerations section of this document has more information about potential warnings and
errors.

For each table that you have selected to add, you will be presented with a page to select which columns
will be synced to the client.

P4 Add Tables to DEFile b4
Choose which columns will be synchronized for the table [dbo]. [chemical_elements].

Caolumn Type Status Message ~
atomic_number int must be synced Primary key
symbol nvarchar synced
name nvarchar synced
atomic_mass nvarchar synced
electron_configuration nvarchar synced
electroneaativity numeric synced Column electronegativity
atomic_radius int synced
ionic_energy int synced
standard_state nvarchar synced

v
< ' >
[atomic_number] must be synced
G

The summary page will describe all of the tables that will be added to the DBFile.

Fd Add Tables to DBFile X

Selecting "Next” will:

Add the [dbo].[chemical_elements] table

Prev Cancel

Click the Next button to add the tables.

ZSS Manager: User Guide

Fd Add Tables to DBFile *

The selected table has been added to the DBFile. Here are some next steps you may wish to take:

Add more tables to the demo DBFile

Configure users and pemissions for the demo DEBFile

Create a fiter that changes which rows are synced

2.5. Ready to Sync!

A Zumero Server configured to connect to the database is now ready to sync DBFile demo which has a

single table chemical_elements. Typically, the other end of the sync will be your maobile app. But ZSS
Manager has a Test Client Window to help out:

Fd 755 Manager
Eile DBFile | Tools | Help

Y A Create a| Test Client... Ctrl+T |

Authentication...

A DBFile is a colle . .
single SQLite data Lonnection 5trings...

Becent Synchronizations...

ByTICE

Synchronized Ta

ZSS Manager: User Guide

Jrd 755 Test Client - C:\Users\jeremy.CDESG\AppData\Local\ Temp\tmpE1C8.tmp - *

File Edit Database Help

DE ¥ G @Y beate ¥ Goyne | @
/** This window is a test environment to experiment with SQLite and Zumero.
A new window starts in an empty SQLite database in which the
following SQLite PRAGMA statements have already been run:
PRAGMA journal_mode=WAL;
PRAGMA foreign_keys=0MN;
PRAGMA recursive_triggers=0N;
For more information, see the Help menu.

Use the Sync button to sync your DBFile. =

Results (Grid) Results (Text)

In this window, we start off working with an empty, temporary SQL ite database. We can sync our test
database into it by clicking the Sync button, which reveals the sync dialog:

Sync
Zumero Server URL: htt n://localhost
DEFile: |demo v]
[] send authentication informaticn

Auth Scheme: {"scheme_type":"default"}
Zumero Username:

Zumero Password:

[Leg sync details 0K I | Cancel

Ready

Configuring the sync to match our setup:

¢ Server URL for alocal server running on port 8080

» DBFile demo matches the DBFile we created.
¢ Send authentication information should be unchecked, becausewe set our test server'spermissions
to alow full anonymous access.

Weclick OK to perform the sync. Back in the test client's window, verify that the table was synced. Now
let's make a change:

10

ZSS Manager: User Guide

P 755 Test Client - C:\Users\jererny. CDESG\AppData\Local\ Termp\trmpE1CB.tmp - * O
File Edit Database Help
N E | # B3 @ | ¥ Execute iSyne | @
/** This window is a test environment to experiment with SQLite and Zumero.
A new window starts in an empty SQLite database in which the
following SQLite PRAGMA statements have already been run:
PRAGMA journal_mode=WAL;
PRAGMA foreign_keys=0N;
PRAGMA recursive_triggers=0N;
For more information, see the Help menu.
Use the Sync button to sync your DBFile. =
UPDATE chemical_elements SET name = "Hello, Hydrogen' WHERE atomic_number
SELECT * from chemical_elements;
Results (Grid) Results (Text)
atomic_number symbol name atomic_mass electron_configul electronegativity atomic_radius
] H | Hello, Hydrogen | 1.00794(4) 1s1 220 37
2 He |Helium 4.002602(2) 1s2 MNULL 32
3 Li | Lithium 6.941(2) [He] 251 98 134
4 Be | Beryllium 9.012182(3) [He] 252 157 %0
5 B |Boron 10.811(7) [He] 252 2p1 204 82
6 C | Carbon 12.0107(8) [He] 252 2p2 235 77 W
< >
Cuery Complete

Now do another sync, the same way we did above. Examining the chemical_elements table in our SQL
Server database, we can see the name for Hydrogen has changed.

3. DBFiles, Defined

A DBFileisalogical grouping of database tables on the server. A DBFile defined on the server with ZSS
Manager corresponds to a SQL ite database file on aZSS Client.

e A SQL Server database can have one or more DBFiles, but a DBFile cannot span multiple SQL
Server databases.
e A SQL Server table can belong to at most one DBFile.

» Permissions are scoped to DBFiles. A permission may apply to a single table within a DBFile
or dl tablesin a DBFile.

» A DBFileisthe smallest sync-able unit in Zumero. Clients specify a DBFile when calling sync,
and all tables within it are synced.

Note

Permissions and filters can cause the contents of a DBFile to significantly differ based on the
syncing user. On client devices, the SQLite database file corresponding to a Zumero DBFile
should be accessed by only one Zumero user.

If multiple Zumero users will share a single device the app should maintain separate SQL.ite
database files, opening the correct file based on the logged-in user.

11

ZSS Manager: User Guide

4. The ZSS Manager Window

When starting ZSS Manager, you will be prompted to connect to a SQL Server, and the main window
will be shown.

4.1. The selected DBFile

In the top right of the main window, you will see a combobox listing al of the DBFiles that have been
created in this primary database. If the DBFile contains tables from a different SQL Server database or
SQL Server instance, clarifying details will be shown in parenthesis after the DBFile name.

Fd 755 Manager - O d
File DBFile Tools Help
W3 # CreateaDBFile “4 B T | @
A DBFile iz a collection of SQAL Server database tables that are synced together into a Curmment DEFile:
single SCLite database on the client device. T
Synchronized Tables
Add Tables to the "demo™ DBFile.... Table Actions -
Table Schema lssues
I, chemical_slements dbo 1 wamings
License Status: Expires 2115-11-18 3¢ Connected: localhost(dema)

If you select a DBFile that contains tables from a different SQL Server instance, you will be prompted
to supply connection details.

4.2. Add a Table to the Current DBFile

Thiswizard adds tables to the current DBFile viathese steps:

Select the tables that will be added to the DBFile.

» For each of the selected tables, awizard page will give you the opportunity to select the columns
to sync to the client database.

» Show asummary of the tables and columns that will be synchronized.
After the database changes are complete, the final page will offer afew possible next steps..

4.3. The Synchronized Tables list

Thislist showsall of the tablesthat have been added to the selected DBFile. In addition, thislist will show
any errors and warnings for the table. The context menu on thislist lets you:

1. Choose Columns to synchronize

12

ZSS Manager: User Guide

2. Configure the Conflict Rules
3. Stop Syncing the table
4. View Warnings and Errors

4.3.1. Choose Columns

If your synchronized tables contain some columns that you don't want to be synced to client databases,
you can select the synced columns during the Add Tables to DBFile wizard, or by selecting the table in
the ZSS Manager window and picking the Choose Columns entry from the context menu.

Note that when new columns are added to atable that is already in the DBFile, they are not synchronized
by default. Use the Choose Columns dialog if you wish to include the new column in the client database.

Fd Columns for [dbe].[chemical_elements] — O *
This dialog lets you choose which columns from the [dbo] [chemical_elements] table are included
when clients sync. Settings here apply to all users, regardless of their fitter settings. Primary key
columns must be synced.

Column Type Status Message =
o msbeorost pmyiey |
symbaol nvarchar synced
name nvarchar synced
atomic_mass nvarchar synced
electron_configuration nvarchar synced
electroneqativity numeric synced Column electronegativit
atomic_radius int synced
ionic_energy int synced
standard_state nvarchar synced

]
e i s ———na
< >

Here we see that:

1. Theat omi c_nunber column must be synced, sinceit is the table's primary key.
2. The remaining columns are currently part of the sync, but could be excluded.

If we choose to Stop syncing [atomic_mass]|, we'll be warned of the conseguences:

Fd Confirm - O *

Are you sure that you want to stop syncing the [atomic_mass] column? There are some
issues to be aware of:

+ The next time a client syncs, the column will be deleted from their local SQLite
database. This can be problematic for clients that reference [atomic_mass] in
SQLite operations. Those operations will fail. You should test all of your older clients
alter making this change.

+ The history that has been saved for the [atomic_mass] column will be deleted. i
you later choose to sync [atomic_mass] again, there may be merge cases where
that history would have been used to complete the merge.

| Stop Syncing [atomic_mass] | Cancel

Afterwards, the column is marked as "not synced", and when it's selected we have the option to Start
syncing [atomic_mass], just as we would with any unsynced column.

13

ZSS Manager: User Guide

Fd Confirm — O *

Are you sure that you want to start syncing the [atomic_mass] column? There are some
izsues to be aware of:

* The next time a client syncs this table, the column will be be added to their local
SQLite database. This can be problematic for clients that fail to reference
[tomic_mass] in SQLite operations (such as not supplying a value on INSERT, or
getting an unexpected column retumed from SELECT). Those operations may fail.
You should test all of your older clients after making this change.

I Start Syncing [atomic_mass] I Cancel

4.3.2. Conflict Rules

This dialog gives you the opportunity to configure the Conflict Resolution settings.

4.3.3. Stop Syncing a Table

If you need to stop syncing atable, you select the table in the ZSS Manager window and pick the "Stop
Syncing" entry from the context menu. It should be noted, however, that this is destructive and shouldn't
be done on live applications with Zumero clients. Any unsynced changes on client databases will be lost,
even if the tableis re-added to the DBFile.

* Your datais|eft alone.
 All Zumero housekeeping data is deleted and the housekeeping tables are dropped.

 Clientswill drop their corresponding table on the next sync.

4.3.4. Table Warnings and Errors

The Synchronized Tables list will allow you to see alist of the Warnings and Errors that may impact the
table's synchronization. To get a clear view of the issues, select the table and choose View Warnings and
Errors entry from the context menu.

Fd Warnings and Errors - O d

= 2

i 1, Column electronegativity has type numernic(18.2). Its values will be muttiplied by 100 and saved as

< >

Selecting one of the errors or issues, you can choose Copy from the context menu to copy the text to the
clipboard.

14

ZSS Manager: User Guide

4.4. The Test Client Window

Jrd 755 Test Client - C:\Users\jeremy.CDESG\AppData\Local\ Temp\tmpE1C8.tmp - * - O *

File Edit Database Help
OE | % Ea@E| Y Beute @ ESyne | @

/** This window is a test environment to experiment with SQLite and Zumero.
A new window starts in an empty SQLite database in which the
following SQLite PRAGMA statements have already been run:
PRAGMA journal_mode=WAL;
PRAGMA foreign_keys=0MN;
PRAGMA recursive_triggers=0N;
For more information, see the Help menu.

Use the Sync button to sync your DBFile. =

Results (Grid) Results (Text)

The Test Client window gives you an environment to experiment with the capabilities of SQL.ite, and also
test using Zumero to sync changes between the client and server.

When you open the Test Client window, you will automatically be connected to a new, temporary SQL ite
database. Thisdatabasewill be deleted when you close thewindow. If you need to save the SQL ite database
between sessions, use the Open SQL ite Database and Save Database Asitemsin the File menu.

4.4.1. Syncing Changes

Pressing the Sync button in the Test Client window, the Sync Dialog will come up.

Sync

Zumero Server URL: | http://localhost:8080 |

DEFile: |der‘r‘|o v |

[+] Send authentication informaticn

Auth Scheme: |{"scheme_type": "default"} v|

Zumero Username: |Iaz|oh |

Zumero Password: |******* |

[Leg sync details 0K I | Cancel |
Ready

There are two syncing modes, authenticated and anonymous. Authenticated syncs validate against a users
table. In order for anonymous syncs to succeed, you must enable anonymous access to your DBFile.

15

ZSS Manager: User Guide

4.4.1.1. Logging Sync Details

The Log sync details checkbox causes the Test Client to sync with sync_det ai | s enabled (seethe ZSS
Client API Documentation for details). After syncing, you can query the zuner o_sync. . . tablesinthe
test client window, in addition to your datatables.

4.4.2. Enabling Important SQLite Features

The Test Client Window enables two SQL ite features that are off by default. When you open or create a
SQL ite database, it executes these pragma statements. When writing your own client, you almost certainly
want to do the same.

PRAGVA forei gn_keys = O\
PRAGVA recursive_triggers = O\

Enabling foreign keys means the client database will enforce the foreign key relationships you've defined
inyour SQL Server database.

Recursivetriggers are necessary for Zumero'striggersto correctly handle SQLite INSERT OR REPLACE
statements.

When creating a new SQL ite database, the Test Client Window also enables WAL (Write-Ahead Logging)
mode.

PRAGMWA j our nal _npde = WAL;

WAL mode is strongly recommended for improved concurrency. See Write-Ahead Logging for more
information.

5. Customizing Synchronizations

5.1. Authentication and Permissions

Zumero for SQL Server supports two authentication sources. The first and default authentication sourceis
called Database Authentication and it stores users and groups in the database. Secondly, Zumero for SQL
Server can use your existing Active Directory as an authentication source.

Each DBFile can have it's own unique authentication source and by default this source is Database
Authentication. If you wish the change the authentication source for aDBFile select DBFile Authentication
Source... from the DBFiles menu.

Fd 755 Manager

File DBFile | Tools | Help

@7 A Create a Test Client... Ctrl+T

Authentication...

A DBFile is a colle - - ce
single SOLite data Connection Strings...

Recent Synchronizations...

Synchronized Ta

The DBFile Authentication Source dialog allows you to configure the default authentication source for
each DBFile. The specific optionsfor each authentication source are covered in moredetail in later sections
of thisguide.

16

http://zumero.com/docs/zumero_for_sql_server_client_api.html
http://zumero.com/docs/zumero_for_sql_server_client_api.html
http://www.sqlite.org/wal.html

ZSS Manager: User Guide

Fd DEFile Auth Source *
DEFile Auth Scheme
demo {"scheme_type":"table","table":"users"
rematedbfile {"scheme_type":"table” "table":"users"}
Close

When syncing with the server, clients must provide an authentication scheme string when calling sync().
When the DBFile default is desired, the following scheme string should be used: 2

{"schene_type": "defaul t"}

An Example from the ZSS Manager Test Client Window:

Sync

Zumero Server URL: |http:_a',a‘lncalhost:BDBD |

DEFile: |demn v|

Send authentication information

Auth Scheme: |{"scheme_type":"default"} b |

Zumero Username: |Iaz|u:|h |

Zumero Password:

[] Leg sync details Cancel

Ready

dedrdidoick |

From client code, it would look like this:

Zurrer oCl i ent . Sync(| ocal Fi | ePat h, ci pherKey, serverUrl, dbfileName, "{\"scheme_type\":
\"defaul t\"}", usernane, password);

Zumero for SQL Server does not provide features for managing users, groups, and passwords from
a Zumero client. The user and group tables are never synced to a client. User, group, and password
management occur on the server. ZSS Manager has an interface for managing users and triesto cooperate
with existing applications.

First we'll describe how to set up users and groups in the database and authenticate them.

2For information on other scheme types, see Non-Default Authentication Schemes

17

ZSS Manager: User Guide

5.1.1. Database Authentication via ZSS Manager

Database Authentication is Zumero's default authentication method. This authentication method stores
the users and groups in the database. When first configuring Database Authentication, ZSS Manager will
ask if it can create the default backing tables for Database Authentication. If you alow this, they will be
created asfollows:

CREATE TABLE [zuner o] . [user s]

(
[id] int IDENTITY(1,1) PR MARY KEY,

[nane] nvarchar (100) UNI QUE NOT NULL,
[pass] nvarchar (100) NOT NULL

)

CREATE TABLE [zuner o] . [gr oups]

[usernane] nvarchar (100) NOT NULL,
[groupnane] nvarchar (100) NOT NULL

)

Users and Groups that you created via the Users and Groups dialog will be added to these tables. The
passwords are encrypted with berypt. s

Database Authentication has a couple of configurable settings. To access these settings use the following
steps:

» Sdlect “DBFile Authentication Source...” from the DBFiles menu.

» Select your DBFile from thelist and click the “Modify” button.

« If not aready selected, change the “ Authentication Source” pulldown to “Database”.

Fd Select Authentication Source *

Authentication Source:

Database w

Locate Via DBFile:

demo ~

The users table will be located in the database
hosting this DBEFile.

Users Table:

ZUMEro.users e

Groups Table:
Located in zumero.groups

Scheme:

{"scheme_type":"table”,"table":"users"}

Scheme string to use when syncing

Cancel

s http://en.wikipedia.org/wiki/Bcrypt

18

http://en.wikipedia.org/wiki/Bcrypt

ZSS Manager: User Guide

Locat e Vi a DBFi | e: Thisoption specifiesthe databasein which the userswill be stored. If you
have a Multiple Database Configuration you can select the DBFile that corresponds to another
SQL Server Database in which user and groups have already been configured.

Users Tabl e: Thisoption specified the name of the table the userswill be stored in. If you have
an existing table containing user information you can change this setting to that table. There are
several caveats when doing this, so read the Database Authentication with Your Own Table or

View below.

5.1.2. Database Authentication with Your Own Table or View

If you already have users and passwords stored el sewhere in your database, ZSS Manager and the Zumero
Server can use them, with some caveats:

Passwords must be either plain text or berypt hashes. (A mix of both in the same table will work.)
Y ou must create a view, zumero.users, with columns [id], [name], and [pass].

If you want to use ZSS Manager to alter users and passwords, the view you create must have
insert and update triggers that handle the name and pass columns.

If you change a user's password with ZSS Manager, it will be encrypted with berypt. This could
cause problems for other applications if they're not expecting passwords in this format.

If you wish to use existing groups, you must create a view, zumero.groups, with columns
username and groupname. Thistableis used to determine group membership.

Itisstrongly recommended that the[i d] and[nane] columns be unique. Non-unique userswill
|ead to unpredictable results, or to failed sync.

If you have existing users and passwords in your database but passwords are neither plain text nor berypt
hashes, you can still use ZSS Manager to set permissions, which isrecommended. Create the zumero.users
view with id, name and pass columns, but write the insert/update triggers such that only the name column
gets updated. This will allow ZSS Manager to change user names and manage permissions, but any
password changes are silently ignored. Y ou can manage passwords outside Zumero, as you did before.

Note

It is possible to use any table or view name for client authentication. Simply specify a different
table when specifying the authentication source for your DBFile.

5.1.3. Active Directory Authentication

Zumero for SQL Server can also make use of the users and groupsin your existing Active Directory setup.
This authentication source has the following requirement:

The machinerunning the Zumero server and the machine used to run the ZSS M anager application
must be members of your Active Directory domain.

Next, you must configure your DBFile to use Active Directory for authentication.

Select DBFile Authentication Source... from the DBFiles menu.
Select your DBFile from the list and click the Modify button.
Change the Authentication Source pulldown to “Active Directory”.
Enter the windows domain in the Active Directory Domain field.

Note

Use the fully qualified domain name for your domain, do not use the Windows 2000 compatible
version.

19

ZSS Manager: User Guide

When using Active Directory asthe authentication source, the Users & Groupsdial og will not be popul ated
with all of the users and groups from Active Directory. If you wish to add permissions for auser or group
you will need to usethe“Add...” button to create an ACL entry for the specified Active Directory object.

No changes are necessary for Zumero clients, they should send the username and password as they
would with Database Authentication. There is a dlight difference on the server that is worth noting. At
authentication time the username is converted to the User Principal Name # (<username>@<domain>).
Thisis most notable when using the {{ZUMERO_USER_NAME}} token with filters.

5.1.4. Built-In Groups

5.1.4.1. Anyone

Permissions granted to Anyone apply to all requests: authenticated or unauthenticated.

Note that thisis different from a sync request that fails authentication by providing invalid authentication
parameters. Failed authentication requests never have data access of any kind. The only way to explicitly
use the Anyone user isto pass null for all three authentication parameters, aswe did in the Quick Start.

5.1.4.2. Any Authenticated User

You may want to set common permissions for any user who successfully authenticates. The Any
Authenticated User allows you to do that.

When using Active Directory as your authentication source, it is recommended for security reasons that
permissions for Any Authenticated User remain set to deny. Instead an AD Group should be created that
includes all of the users you wish to have access to the Zumero sync service.

5.1.5. Permissions

Zumero checks permissions from most to least specific. When an authenticated user Winifred syncs,
permissions are checked in this order:

* the Winifred user

» Any group of which Winifred is a member

 the Any Authenticated User group

* the Anyone group

As soon as either Allow or Deny is found, the checking stops. If no permission is set, the checking
continues. If no match isfound the sync is denied.

Note

In the absence of any permissions data, a server is completely locked down: nobody has access
to anything. This is nice and secure, but a bit hostile to newbies. Be sure to set up a user with
rights when getting started.

Zumero syncs are atomic: they succeed or fail asasingle unit. This comesinto play when permissions are
checked. Say Winifred has modified existing rows and added some new ones. When she syncs, she must
have permissions to do both, or the entire sync will be denied.

Zumero for SQL Server has four permissions:

4 https://msdn.microsoft.com/en-ug/library/ms680857(v=vs.85).aspx

20

https://msdn.microsoft.com/en-us/library/ms680857(v=vs.85).aspx

ZSS Manager: User Guide

5.1.5.1. Pull

Pull is analogous to a read permission. The way to read data from the Zumero Server isto pull it. How
that datais accessed on a client application is up to its devel oper.

The scope of the Pull permission is the entire DBFile. You can pull all of the tablesin a DBFile, or none
of them.

5.1.5.2. Add

A user with Add permission can add new rows. More precisely, when a client having new rows does a
sync, this permission is necessary for that sync request to succeed.

Add may be defined for an entire DBFile, or for aspecific tablewithinaDBFile. It's possible, for example,
to let Winifred add new rows to the Customers table but not the Sales table.

5.1.5.3. Modify

The Modify permission allows changes to existing rows.

Like Add, Modify can be set for a specific table or an entire DBFile.

5.1.5.4. Delete

The Delete permission allows deleting existing rows.

Like Add and Modify, Delete can be set for a specific table or an entire DBFile.

5.1.6. Setting up Permissions through Another DBFile (table2 authentication)

By default, authentication is performed by looking up users in the zuner o. user s table in the same
databases as the DBFile's data. Y ou may wish, however, to authenticate against a table stored elsewhere
-- e.g. when sharing a user table among DBFiles in different databases.

In this case, you'l still need a table in one of those databases. Access to "remote” user tables is always
done by looking up the connection information for a DBFile which lives in the user table's database. In
the Authentication... dialog, you'd select the DBFile and click the Modify button

P4 DEFile Auth Source X
DEFile Auth Scheme
demo {"scheme_type":"table” "table":"users"}
remotedbfile {"scheme_type":"table","table":"users"}
Close

21

ZSS Manager: User Guide

...which brings up the Select Authentication Sour ce dialog;:

Fd Select Authentication Source *

Authentication Source:

Databaze ~

Locate Via DEFile:
remotedbfile (otherdb) w

The uszers table will be located in the database
hesting this DEFile,

Users Table:

ZUMEro.users i

Groups Table: Create

The zumero.groups table is not present

Scheme:

{"scheme_type":"table","table":"users"}

Scheme string to use when syncing

Cancel

Here, we've selected ther enot edbf i | e DBFile asthe link to our user data. The Table drop-down now
lists user tables found in the database containing r enot edbfi | e. We're sticking with that database's
zumer o. user s for now.

The Scheme box contains an authorization scheme string, ready to be used asthe schene parameter ina
client application'ssync() call. Copy and paste this code to avoid manually creating a matching scheme
string.

On return to the User s and Permissions dialog, and beginning to Add a user permission entry, we how
see the users from that remote users table:

5.1.7. Non-Default Authentication Schemes

Asarule, it'sbest to use the def aul t authentication scheme. There are two main advantages:

1. It leaves authentication details in the hands of the server, not the client.

2. Itallowstheauthentication sourceto change (on the server) without affecting sync, configuration,
or code on the client side.

If necessary (primarily for backwards-compatibility with older versions of Zumero), you can explicitly
specify t abl e or t abl e2 authentication.

5.1.7.1. table Authentication

This is the simplest form of table-based authentication. It uses a named table (or view) in the same SQL
Server database as your application data, with i d, name and pass columns as described in Database
Authentication with Y our Own Table or View.

The standard Zumero authentication table (“zumero.users’) would be specified by:

{"scheme_type":"table","tabl e":"users"}

22

ZSS Manager: User Guide

In most situations, thiswill be the same authentication source used by { " schene_type": "defaul t"}.

5.1.7.2. table2 Authentication

In cases where multiple DBFiles (across multiple databases) will share a single authentication source, you
can use t abl e2 authentication. This works just like table authentication, but adds the name of another

DBFile. The authentication table will be found in that DBFil€'s database.

If you were going to authentication against the “zumero.users’ table in the database hosting the central
DBFile, you'd do so via:

{"dbfile":"central", "schene_type":"tabl e2","tabl e": "users"}

5.2. Filters

ZSS supports filtering tables by row and column based on the syncing user. Filters can be used to reduce
the storage size and bandwidth requirements of an app. They can aso be used to prevent sensitive data
from being synced to mobile devices.

P4 Filters: demo - O *
Synchronized Tables
Table Details: chemical_elements
[] Exclude Entire Table
Excluded Columns
Column Default: stomic_mass
(® SOL Server (NULL)
O Other
& ox
Add Remove
Row Filter Effective Filter
Row Inclusion WHERE Clause
[] Also use WHERE clause to prevent writes Insert Zumero User Token
Insert Time-of-5ync Token
Applies To: |Any0ne | OK Cancel

Tables may befiltered in the following ways:

A synchronized table may be completely excluded.
» Columns within a synchronized table may be excluded.
» Rowswithin a synchronized table may be excluded.

When a row in a synchronized table is excluded, this automatically causes all rows which reference the
excluded row to also be excluded. This feature of Zumero allows for easy filtering of multiple tables and

prevents foreign key constraint violations on the client.

23

ZSS Manager: User Guide

5.2.1. Filter Scopes

When choosing afilter to apply, the Zumero server takes these issues into account:

* Like permissions, filters are checked from most to least specific. Only the first matching filter is
applied. User-specific filters will take priority over group filters. Group filters will take priority
over "Any Authenticated User" and "Anyone” filters. An "Any Authenticated User" filter will
take priority over an "Anyone" filter.

A filter exists within the scope of a DBFile. It may only filter tables that are synchronized with
that DBFile.

* You may create filters for the Anyone and Any Authenticated users.

» A user may appear in only one User filter. If a user appears in a User filter and a Group filter,
the group filter will be ignored for that user.

* Filters stand aone. It's not possible to create a filter based on another such that the result is a
combination of thetwo. If you have morethan onefilter, you may need to duplicate some settings.

5.2.2. Editing a Filter

The Edit Filter dialog contains all of the settings for a single filter. The list on the left shows all of the
tables that are synchronized in the current DBFile. If any of the table names are bold, they aready have
some filter settings applied.

5.2.2.1. Excluding tables and columns

If you need to have some users sync atable or column, while other users do not sync that table or column
to their local client database, you will use filters to accomplish that.

» Excluding atable in afilter does not impact the change-tracking applied to the SQL Server host
table. If you don't want any users to sync the table, choose to Stop Syncing it instead.

» Excluding a column in afilter does not impact the change-tracking applied to the SQL Server
host table. If you don't want any users to sync the column, use the Choose Columns dialog to
stop syncing it instead.

The Excluded Columns list will show columns that are specifically excluded by this filter, as well as any
that are excluded because of settings in the Choose Columns dialog.

5.2.2.1.1. Column defaults

If you have excluded a column viaafilter, or using the Choose Columns dialog, you can provide a default
value using the Edit Filter dialog. Thiswill be the value used when inserting any rows that were initially
inserted on aclient SQL.ite database. Y ou may choose either the SQL Server default value, or an explicitly
specified value.

5.2.2.2. Filtering rows

A filter can reduce the number of rows synced to a client database in two ways.

» Foreign Key exclusions: All foreign keyswill be enforced for agiven table. For example, Table
[child] has a foreign key to Table [parent]. If afilter excludes rows from [parent], any rowsin
[child] which point to excluded [parent] rows will also be excluded. Y ou can use the Effective
Filter tab to see al of the foreign key relationships which will be enforced.

 WHERE clauseinclusion: Explicitly entering aWHERE clause for atable allows you to choose
which rows are synced to the client.

24

ZSS Manager: User Guide

5.2.2.2.1. Row Inclusion WHERE Clause

5.2.2.2.1.1. ZUMERO_USER_NAME

When this query is executed by the Zumero server for a syncing client, the { { { ZUMERO_USER _NAME} } }
token is replaced by the syncing user's nane. That makesit useful for Any Authenticated User or Group
filters. That also means it will not work on filters defined for the Anyone user since the syncing client
could be syncing anonymously

5.2.2.2.1.2. TIME_OF_SYNC

In addition to the { { { ZUMERO_USER_NAME} }} token mentioned in the previous example, thereisalso a
{{{TI ME_OF_SYNC}}} token. During a sync, this token is replaced with a datetime object representing
the moment when the sync happened. It is the same as using any of the following SQL Server functions,
but allows Zumero to use much less bandwidth during sync and a so eliminates race conditions that could
lead to sync failures:

» GETUTCDATE()
» GETDATE()
e CURRENT_TI MESTAMP
5.2.2.2.1.3. z$this
Thediasz$t hi s can be used in the WHERE clause to refer to the current table.

5.2.2.2.1.4. Also use WHERE clause to prevent writes

Row Inclusion WHERE clauses affect reads, meaning which rows are sent from the server to the client.
By default, they do not prevent writes— meaning, what kinds of inserts, updates, or deletes a client can
push to the server. To affect writes too, select the "Also use WHERE clause to prevent writes' check box.
In this way, you can use the WHERE clause to configure write permissions at arow-level granularity

If the "Also use WHERE clause to prevent writes' option is selected, al of the following operations are
prevented, and will cause the client to receive a"permission denied" error:

* AnINSERT of arow that does not match the Row Inclusion WHERE clause.
* An UPDATE that causes arow that matches the WHERE clause to no longer match it.

» AnUPDATE of arow that does not match the WHERE clause (even if it causestherow to become
amatch).

» A DELETE of arow that does not match the WHERE clause.

Note that only the first two operations are even possible under normal circumstances. The last two can
only occur when there are existing clientsthat have already synced without thefilter, and thefilter isgoing
to be applied starting with their next sync.

5.2.2.2.2. Sample WHERE Clauses
Here are some basic scenarios that you may encounter when configuring a WHERE clause.
A staticfilter.
WHERE region = 'Asia'
Filter atable based on matching a column to the Zumero user performing the sync.
VWHERE name = ' {{{ZUMERO USER NAME}}}'

Join to atable based on the Zumero user performing the sync. This may be redundant if the other tableis
already filtered. Check the Effective Filter tab.

25

ZSS Manager: User Guide

VWHERE userid in (SELECT i d FROMuser st abl e WHERE nane ="' {{{ ZUVERO USER NAMNE}}}')
A dlightly more complicated join

WHERE regionid in (SELECT id FROM userregi ons WHERE userid in (SELECT id FROM
user stabl e WHERE nanme = ' {{{ZUVERO USER NANE}}}"'))

Some tables are write-only, meaning rows can be inserted on the client, but no server rows should ever
be synced to client databases. Y ou can accomplish this by using a WHERE clause that always matches
Zero rows.

WHERE 0 = 1

5.3. Constraint Violations and Conflict Resolution

Whenaclientinvokeszuner o_sync(), it sendsapackageto the server. Thispackage containsall changes
to the client's copy of the database which have been made since the last time that client was synchronized.

If the server's copy of the database has not been changed in the meantime by other clients, the changes
contained in the incoming package will simply be added to the database.

However, if some other client has aready sent a package of changes, it is possible that there will be
conflicts. The Zumero server isresponsible for automatically resolving these conflicts using aset of rules.
These rules can be customized.

There are two basic kinds of conflicts that can happen:

» Row conflicts. The incoming package is trying to update or delete a row which has already been
updated or deleted by another client. By default, row conflicts will not cause the client's sync to
be rejected.

» Congtraint violation conflicts. The incoming package causes the violation of a SQL constraint
because of achange that has already been received from another client. By default, any constraint
violation conflicts will cause the client's sync to be rejected.

When a client's sync is rejected because of a row conflict or constraint violation of any kind,
zumer o_sync() will return one of the following error codes.

#define name integer result code zumero_errstr() string
ZUMERO_CONSTRAINT _ 2760 constraint_violation
VIOLATION

ZUMERO_UNIQUE _ 3016 unique_constraint_violation
CONSTRAINT_VIOLATION

ZUMERO_CHECK _ 3272 check_constraint_violation
CONSTRAINT_VIOLATION

ZUMERO_FOREIGN_KEY _ 3528 foreign_key_constraint_violation
CONSTRAINT_VIOLATION

ZUMERO_SYNC REJECT _ 3784 package rejected
BY_RULE

Any of these error codes mean that the server refused to accept the client's package because one or more
database operations contained in the package were problematic. These are the only error codes used for
this purpose.

Note

In rare occasions, Zumero app devel opers have observed SQLite's constraint violation error code
(19) ariseduring acall to sync(). Prior to ZSS version 2.0, this usually indicated that Zumero had

26

ZSS Manager: User Guide

been configured with an unsupported Row Inclusion WHERE clause. Now that Zumero supports
arbitrary WHERE clauses, a SQL.ite error 19 during sync usually indicates the presence of abug
in Zumero. Contact Zumero support if such an error is ever returned by zunmer o_sync().

The Conflict Rules dialog can be used to adjust, on a per-table basis, how certain conflict situations are
handled. It can be opened from the context menu in the main ZSS Manager window. The various different
conflict situations and how they can be handled are detailed below.

5.3.1. Attempting to modify a deleted row.

The incoming package is trying to modify arow which has been deleted.

Example 1. A sample modify-after-delete conflict

Consider a case where the table in question has two columns: key, and name. Two clients, John and Paul
are both synced with the server, and have the latest contents.

e John deletesarow.

DELETE FROM t abl e WHERE key = 4

e Paul modifies the same row.

UPDATE t abl e SET nane=' bar' WHERE key = 4

 John syncs his change to the server. The sync is successful. The row is deleted.
* Paul syncshischangeto the server. The server must use the configured ruleto resolve the conflict.

The possible resolutions are;

 Accept the incoming modify operation. The row will be restored, with Paul's values key=4 and
name="bar'. Thisisthe default action. It is sometimes referred to as an "undelete”.

* Ignore the incoming modify operation. The row will remain deleted.

» Regect all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine_since last_sync() to remove the modify
operation.

5.3.2. Attempting to delete a modified row.
Theincoming package istrying to delete a row which has been modified.

Example 2. A sample delete-after-modify conflict

Consider a case where the table in question has two columns: key, and name. Two clients, John and Paul
are both synced with the server, and have the latest contents.

e John modifies arow.

UPDATE t abl e SET nanme=' bar' WHERE key = 4

o Paul deletes the same row.

DELETE FROM t abl e WHERE key = 4

« John syncs his change to the server. The sync is successful. The row has the values key=4 and
name="bar'

27

ZSS Manager: User Guide

« Paul syncshischangeto the server. The server must use the configured ruleto resolve the conflict.
The possible resolutions are;

« Ignoretheincoming delete operation. Therow will remain, with the values key=4 and name="bar".
Thisis the default action.

 Accept the incoming del ete operation. The row will be deleted.

» Regect all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine since last_sync() to remove the delete
operation.

5.3.3. Attempting to modify a modified row.

Theincoming package istrying to modify arow which has been modified.

Example 3. A sample modify-after-modify conflict

Consider a case where the table in question has three columns: key, name, and city. Two clients, John and
Paul are both synced with the server, and have the latest contents.

» Both John and Paul have the same contents for the row. The current values are key=4, name="foo’
and city="Liverpool'

» John modifies the row.

UPDATE t abl e SET name=' bar' WHERE key = 4

e Paul modifiesthe row.

UPDATE tabl e SET city='Hanburg' WHERE key = 4

» John syncs his change to the server. The sync is successful. The row has the values key=4,
name="bar', city="Liverpool'

* Paul syncshischangeto the server. The server must use the configured ruleto resolve the conflict.

The possible resolutions are:

» Use the column merge rules to synthesize a new row, combining both Paul and John's changes.
Using the default column merge rules, the row will have the values key=4, name="bar' (from
John), city="Hamburg' (from Paul) Thisis the default action.

» Accept Paul's version of the row. The row will have the values key=4, name="foo’ (unchanged),
city="Hamburg' (from Paul)

* Ignore Paul's version of the row. The row will have the values key=4, name="bar' (from John),
city="Liverpool' (unchanged)

* Regect all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine_since last_sync() to remove the modify
operation.

5.3.3.1. Column Merge

When merging two modify operations, one of the possible actions is to merge the columns. This means
instead of resolving this conflict for the row as a whole, examine each column individually, and try to
merge the two versions of the row on a column-by-column basis.

It is possible to set the default column merge action for al columns, or to specify each column's merge
ruleindividually. Y ou may not set a column merge rule on a primary key column.

28

ZSS Manager: User Guide

Example 4. Example: column merge

Consider a case where the table in question has three columns: key, name, and city. Two clients, John and
Paul are both synced with the server, and have the latest contents.

Both John and Paul have the same contents for the row. The current values are key=4, name="foo’
and city="Liverpool’

John modifies the row.
UPDATE t abl e SET nanme=' bar' WHERE key = 4

Paul modifies the row.

UPDATE t abl e SET city='Hanburg' WHERE key = 4

John syncs his change to the server. The sync is successful. The row has the values key=4,
name="bar', city="Liverpool'

Paul syncshischangeto the server. The server must use the configured ruleto resolve the conflict.

Each column can have a different column merge rule. Consider the following actions for the city column:

Accept Paul's value for city. The value for the city column will be 'Hamburg'. Thisis the default
action.

Ignore Paul's value for city. The value for the city column will be ‘Liverpool'.

Attempt to mergethetext of Paul'svaluewith thetext of John'svalue. Thetwo changesare merged
using a line-oriented 3-way merge. The technique is identical to what version control tools do
when attempting to automerge two changes to atext file.

This action is only available for text columns
When choosing a text merge operation, a fallback action will need to be provided, to handle the
case where the text merge fails. The default fallback action is to accept the incoming value.

Reject all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_guarantine_since_last_sync() to remove the modify
operation.

5.3.4. Attempting to delete a deleted row

For the sake of compl eteness, note that the situation where a sync is attempting to delete arow which has
already been deleted is not considered a conflict. If everybody wants the row to go away,it does.

The Conflict Rules dialog does not list this as a conflict situation and does not allow you to change this
behavior.

5.3.5. UNIQUE Constraint Violations

Consider a scenario involving two clients, Phil and Lew, who are sharing a database on the server.

The database contains one synchronized table, defined as:

TABLE foo: (
foo_id uniqueidentifier PRI MARY KEY DEFAULT NEW DY),
a nvar char (max),
b int,
UNI QUE (a, b)
)

29

ZSS Manager: User Guide

» Westart the examplewith Phil, Lew and the server all at version 1 of the database, which contains
No rows.

 Phil does:

I NSERT I NTO foo (a,b) VALUES ('rose', 16);

* Lew does:

I NSERT | NTO foo (a,b) VALUES ('rose', 16);

* Lew does:
zunmero_sync(...)

The server's database goes to version 2, with his row inserted into the foo table.
* Phil does:

zunero_sync(...)

Phil's sync will cause aviolation of the unique constraint.

Currently, Zumero does not have any mechanism to allow for alternative handling of regular UNIQUE
constraint or UNIQUE index violations. (It does have provisions for handling certain PRIMARY KEY
constraint conflicts, though, as we'll see in the next section.) So whenever possible, the best way to deal
with UNIQUE constraint violations during sync is to carefully design your app to avoid them happening
in the first place. Any time you INSERT or UPDATE datain a column which has a UNIQUE constraint,
try to make sure that the datais likely to be unique.

5.3.6. PRIMARY KEY constraints

Like UNIQUE constraints, PRIMARY KEY constraints will cause a violation on sync if a client has
inserted the same value as a previous client. There are two exceptions to this behavior:

 If atable's primary key isan IDENTITY column, the Zumero server will automatically assign
therecord anew IDENTITY value. If thevalueisreferenced by FOREIGN KEY constraint from
any other records in the package, those references will be updated as well.

Thisisthe default behavior for al tableswith an IDENTITY primary key. It cannot be changed.

 If atable's primary key isnot an IDENTITY column, the table can be configured to ignore the
row if it'san exact duplicate of an existing row (in other words, if all column valuesthat the client
sent are an exact match against a single row on the server).

To enable this feature from the Conflict Resolution dialog, select "ignore the incoming row if it's
an exact duplicate" from the dropdown menu for "Sync wants to insert arow" + "Another row
with the same primary key already exists'. (Note that this options is only available if the table's
primary key isnot an IDENTITY column.)

5.3.7. Foreign Key Constraint Violations

5.3.7.1. Non-"Conflict" Violations

First, asan aside, note that since Zumero replicates the SQL Server datato a SQL ite database on the client
side, it ispossible for client appsto have foreign key constraints disabled. We recommend that apps have
foreign key constraints turned ON at all times, e.g. by using the foreign_keys pragma:

30

ZSS Manager: User Guide

PRAGVA forei gn_keys = O\

If foreign_keys are turned off, it is possible for a client to make arbitrary changes to their local database
in violation of foreign key constraints. Then when they sync, their package will be rejected due to the
constraint violations. This kind of failure is a constraint violation, but not a "conflict" in the traditional
sense (i.e. where would-be valid operations in the package are conflicting with other changes that have
already happened on the server).

5.3.7.2. Violation on INSERT
Consider a scenario involving two clients, Harold and Don, who are sharing a database on the server.

 The database contains two synchronized tables, defined as:

TABLE foo: (a nvarchar(max) PRI MARY KEY);

TABLE bar: (id uniqueidentifier PRI MARY KEY DEFAULT NEW D(), b nvarchar (max)
REFERENCES foo (a));

* We start the example with Harold, Don and the server all at version 1 of the database, which
contains the following row:

I NSERT | NTO foo (a) VALUES (' hello');

» Harold does:

I NSERT | NTO bar (b) VALUES (' hello');

* Don does:

DELETE FROM f oo;

e Dondoes:
zunero_sync(...)

The server's database goes to version 2, and the foo table is now empty.
* Harold does:

zunmero_sync(...)

Harold's sync will cause aviolation of the foreign key constraint, because the row he inserted into bar is
referencing arow in foo which no longer exists, because Don deleted it.

Harold will not be able to perform any sync operations that contain this conflict. His client must call
zumero_quarantine_since _last_sync() to remove the insert operation. This is the default behavior.

Alternatively, Zumero can be configured to ignore insert operations that violate a given foreign key
constraint. This setting can be adjusted from the Conflict Rules dialog, when looking at the table with
the outgoing foreign key constraint. It will mention the foreign key by name. By default SQL Server will
give aforeign key constraint a name with the following components, concatenating them together with
underscores in-between:

e "FK"
« thereferencing table's name

31

ZSS Manager: User Guide

« thereferencing column's name
» ahexadecimal number

This"ignore" setting isdescribed in terms of an insert operation, but it has one other affect aswell. Besides
insert operations, "undelete" operationswill also beignored. In other words, in the conflict situation where
the client package contains an update to arow that has already been deleted, the server will favor ignoring
the update operation over attempting to restore arow that would violate the foreign key constraint. Again,
this behavior istied to setting for inserts, rather than having a separate configuration.

One final note about the "ignore" setting is that it does not distinguish between true "conflicts" and the
more simpleand blatant violationsthat could ariseif the client did not haveforeign key constraints enabled.
All inserts that violate the constraint will simply be ignored.

5.3.7.3. Violation on DELETE

Broadly speaking, there are two waysto violate aforeign key constraint. Y ou can attempt to insert avalue
into the referencing table which is not present in the referenced table, as we saw in the previous section.
Or you can attempt to delete a value from the referenced table that is still present in the referencing table.
Let'slook at this latter case next.

Consider, again, ascenario involving two clients, Harold and Don, who are sharing adatabase on the server.

» The database contains two synchronized tables, defined as:

TABLE foo: (a nvarchar(max) PRI MARY KEY);

TABLE bar: (id uniqueidentifier PRIMARY KEY DEFAULT NEWD(), b nvarchar (max)
REFERENCES foo (a))

» We start the example with Harold, Don and the server al at version 1 of the database, which
contains the following row:

I NSERT | NTO foo (a) VALUES (' hello');

» Don does:

DELETE FROM f 00;

» Harold does:

I NSERT | NTO bar (b) VALUES (' hell0');

» Harold does:
zunmero_sync(...)

The server's database goes to version 2, and the bar table now references the row in foo.
» Dondoes:

zunero_sync(...)
Don'ssync will cause aviolation of theforeign key constraint because the row he deleted from foo isbeing
referenced by arow in bar which was added by Harold.

Don will not be able to perform any sync operations that contain this conflict. His client must call
zumero_quarantine_since last_sync() to remove the delete operation. Thisis the default behavior.

32

ZSS Manager: User Guide

While this behavior cannot be adjusted by Zumero, it can be adjusted using referential constraint actions
in SQL directly. For example, if the constraint above had specified ON DELETE CASCADE then Don's
package would have imported successfully and deleted the row in "bar" that had been added by Harold.

5.3.8. CHECK Constraint Violations

Consider a scenario involving two clients, Nancy and Ann, who are sharing a database on the server.

» The database contains one synchronized table, defined as:

TABLE foo: (
id uniqueidentifier PRI MARY KEY DEFAULT NEW DY),
aint,
b int,
c int,
CHECK (¢ > (a + b))
DE

And one record:

INSERT INTO items (a,b,c) VALUES (10, 20, 50);

» We start the example with Nancy, Ann and the server all at version 1 of the database.
» Nancy does:

UPDATE itens SET a=25

Therow isnow (25, 20, 50). Since 50 > (20 + 25), the CHECK constraint is satisfied.
* Anndoes:

UPDATE itens SET b=35

Therow isnow (10, 35, 50). Since 50 > (10 + 35), the CHECK constraint is satisfied.
* Anndoes:

zunmero_sync(...)

The server's database goes to version 2.
» Nancy does:

zunmero_sync(...)

Nancy's sync will cause aviolation of the CHECK constraint, because column mergewill result in arecord
(25, 35, 50), which is aviolation because 50 is hot > (25 + 35).

Nancy will not be able to perform any sync operations that contain this conflict. Her client must call
zumero_quarantine_since last_sync() to remove the update operation. This is the default behavior. It
cannot be changed.

Also, note that currently ZSS does not replicate any of the server's CHECK constraints to the client. App
developers using Zumero should have logic in place at the higher layers which will ensure the validity
of the data being inserted (though this would be true even if the CHECK constraints were replicated, to
avoid client-side SQL constraint violation errors). That being said, it is still technically possible that, like
with FOREIGN KEY constraints, a client package could encounter a CHECK constraint violation on the
server, even if there were no other "conflicting" changes involved.

33

ZSS Manager: User Guide

6. SQL Server Considerations

Zumero tries hard to tread lightly as a participant in your SQL Server infrastructure.

6.1. Create DBFile

The first time this command is run in a SQL Server database, Create DBFile creates the zumer o schema.
All new objects created by ZSS Manager are created under this schemato logically separate them from
your database.

Note

Do not create tablesin the zumer o schema. That schemais reserved for use by ZSS; datain the
zurmer o schemamay be dropped or modified without warning.

Each time a new DBFile is added, ZSS Manager performs these additional steps:

* Create ahandful of housekeeping tablesfor the DBFile, somewith triggers on them. These tables
keep track of transactions, data changes, schema information, merge resolution rules, and user
permissions.

» Create a stored procedure which determines the current SQL Server transaction and returns a
corresponding Zumero transaction ID.

* Create astored procedure which marks anew set of transactionsto be exported to Zumero clients.

6.2. Add Tables to DBFile
In terms of database changes, adding atable will:

e Create a view which the Zumero Server uses to query and modify the selected table when a
Zumero client syncs. Because this view is also used for changes coming from a Zumero client,
there are insert, update, and delete triggers on this view.

» Create insert, update, and delete triggers on the selected table allowing Zumero to keep track of
changes made by other applications.

» Savethetable's current schema.

» Save transaction data, effectively pretending that al existing rows in the selected table were
inserted in a Zumero transaction.

6.2.1. Primary Keys

Zumero's triggers depend on a table's primary key to uniquely identify rows. A side-effect of this
requirement isthat in a synchronized table, primary key values can no longer be changed. If you try,
the transaction will fail with aforeign key constraint violation from a Zumero housekeeping table which
looks like this:

The UPDATE statenment conflicted with the REFERENCE constraint "fk_testzx$5975771".
The conflict occurred in database "test", table "zumero.testzx$5975771", col um
"test'.

Zumero creates an AFTER UPDATE trigger on your table. Init, Zumero needsto be able to correlate arow
from the implicit DELETED table with its counterpart in the implicit | NSERTED table. Unfortunately SQL
Server provides no way to do this beyond a set of columns which uniquely identifies the row and doesn't
change. By preventing updates to primary key values, we aways have this.

For this reason and others, changing primary key valuesin SQL Server is often cited as a bad practice. If
you have existing applications that rely on changing primary key values, you may want to change them
whether or not you use Zumero. If you must change arow's primary key values, you will need to delete
the row and add it back with the desired changes.

34

ZSS Manager: User Guide

6.2.2. Requirements

ZSS Manager will refuse to add atable unless it meets certain requirements. To be added, atable must...

have a primary key

not have any columns whaose types are unsupported. Where possible, unsupported columns will
be excluded and not synced to the client; however, unsupported primary key columns, etc. can't
be excluded. Tables with such columns cannot be synchronized.

not have an identity column unlessit is the (one and only) primary key column
not have a non-integer identity column

all foreign key references must point to a table already added to the DBFile. Alternatively, you
can choose to skip the foreign key reference column.

not use any reserved column names

not include foreign key references to other columns in the same table, if an identity primary key
is present

not be part of acircular foreign key reference (other than allowable references to columnsin the
same table)

6.2.2.1. Unsupported Data Types

Zumero for SQL Server does not support the following SQL Server data types:

dat eti meof f set

decimal /nuneric with precision greater than 18
i mge

nt ext

sql _vari ant

t ext

ti mestanp

xm

6.2.2.2. User Defined Types
Zumero for SQL Server supports any user-defined type that is based on a supported system type.

6.2.2.3. Reserved Column Names

The following column names are reserved for use by Zumero or SQLite:

6.2.3. Warnings

rowid
z_del _txid
z_gen_add
z_gen_del
zrid

z_rv

z txid

ZSS Manager will display warnings for certain tables. These warnings don't prevent you from adding a
table but usually indicate the table has characteristicswhich won't be replicated to aclient SQL ite database.

35

ZSS Manager: User Guide

The following table characteristics will not be automatically replicated to client databases:

» Non-unigue indexes

* check constraints

« filtered unique constraints

* unigque constraints withi gnor e_dup_key enabled
* triggers (see SQL Server Triggers below aswell)

e computed columns

6.2.3.1. Primary Keys

Adding a table will prevent future changes to data in that table's primary key column(s). The reasons
behind this are described above. ZSS Manager will warn for any non-IDENTITY primary key columns
(because IDENTITY columns are already immutable).

6.2.3.2. Indexes

Because they serve a data integrity purpose, al unique indexes (or constraints) will be replicated to the
client database. Non-unique indexes, however, are deliberately left behind. Indexes that are designed to
optimize performance on your server are often not the same indexes you want for a single app's use on
a mobile device. For this reason, Zumero does not automatically replicate them. Y ou should add to the
client database only the indexes that are appropriate to your mobile app.

6.2.3.3. Decimal, Numeric, Money and Smallmoney types

The exact SQL Server floating point types also yield a warning. Because SQL.ite has no exact floating
point type, these values are multiplied by 107scal e and stored as integersin the client database. Money
and smal | noney always have scale 4 and are multiplied by 10™4 or 10,000. For example, a SQL Server
smal | noney value of 12.34 is saved as 123400 in the client database. In aclient app, you should multiply
or divide the integer by the defined scale when saving or retrieving the value, respectively.

Note

Zumero does not support decimal or numeric columns with precision greater than 18. 64-bit
integersare used in the client SQL ite database, and precisions greater than 18 will overflow them.

6.2.3.4. Default Values

ZSS supports some SQL Server default value definitions. Most literals and the GETUTCDATE function
are supported and will be automatically included in the client database. A warning will appear for any
unsupported defaults. Unsupported defaults are not included in the client database.

6.2.3.5. Small Identity Columns

ZSS Manager will warn you about any | DENTI TY columns smaller than 32-bits. Identity values created on
the client can be considered temporary: when syncing, the server will insert "official" values and replicate
the changes back to the client. For thisreason, the client can't know if it is overflowing an identity column.
Only the server knows for sure. If you wereto makeat i nyi nt columnan| DENTI TY(1, 1), you'd only
get 255 rows before an overflow. ZSS Manager warns you to help prevent this scenario.

6.2.3.6. Non-Unicode Text Columns

The client SQL ite database has only Unicode text storage. All text in the client database is UTF-8 encoded
and no attempt is made to exclude non-ASCI| text. For this reason, ZSS Manager will warn about char

36

ZSS Manager: User Guide

and var char fields, which do not support Unicode. Y ou should take care in your client to write only
ASCII datain these fields. Non-ASCII data may be mangled when synced to the server.

6.2.3.7. MAX columns

ZSS Manager will warn about thelengths of any var char (max) , nvar char (max) , or var bi nar y(nax)

columns. In SQL Server, the maximum length for these columns is 2 gigabytes. In the client SQLite
database the maximum lengthis 1 billion bytes, whichisabit lessthan agigabyte. (Thisisunlikely to affect
amobile app. Y ou don't want to transfer multi-gigabyte fields over mobile networks for reasons that have
nothing to do with Zumero: mobile networks aren't that fast and mobile device storage isn't that plentiful.)

6.2.3.8. Unchecked foreign keys

ZSS Manager will warn about unchecked foreign keys. In SQL Server, it is possible (usually via ALTER
TABLE. .. W TH NOCHECK) to have aforeign key relationship where the values are not actually checked
against the foreign tables. This can lead to foreign key constraint failures on the client side when non-
matching rows are included in the synced data.

6.2.3.9. Columns named "rowid" or "oid"

The column names " r owi d" and " oi d" can have specia meaning in SQLite”. If atable has a column
named "rowid" or "oid" (or one of itsvariants- "RowID", "OID", etc.) Zumero will create and synchronize
this column correctly in the client database, however some third-party ORMs or libraries might not work
correctly with it. For this reason, ZSS Manager will issue awarning for such a column.

6.2.4. SQL Server Schemas

ZSS supports SQL Server schemas. Any table belonging to a schema other than dbo will appear in the
client database prefixed by the schema name and an underscore:

SQL Server Table Client Database Table

dbo.Categories Categories

sales.Categories sales Categories

region.Categories region_Categories
Note

Y ou must not create tablesin the zuner o schema. That schemalis reserved for use by ZSS; data
in the zumer o schema may be dropped or modified without warning.

6.3. Stop Syncing a Table

If you need to stop syncing atable, you select the table in the ZSS Manager window and pick the "Stop
Syncing" entry from the context menu. It should be noted, however, that thisis destructive and shouldn't
be done on live applications with Zumero clients. Your data is left alone, but all Zumero housekeeping
datais deleted and the housekeeping tables are dropped.

Clientswill drop their corresponding table on the next sync. This behavior has noteworthy consequences:

* Any unsynced changesto thetablein client databases are lost.

» The previous statement istrue even if thetable is re-added before a client has synced and
dropped the table. All Zumero housekeeping data is deleted, so clients must still drop and
recreate the table.

s http://www.sglite.org/lang_createtable.html#rowid

37

http://www.sqlite.org/lang_createtable.html#rowid

ZSS Manager: User Guide

6.4. Delete DBFile

Deleting a DBFile should be considered destructive. It is tremendously useful during development, but
should be avoided in production. Deleting a DBFile won't delete your data from the server database, but it
will invalidate any client databases that have synced against it. Even if you replace a deleted DBFile with
another of the same name, corresponding client databases need to be deleted and re-synced. Also note that
any user permissions associated with the DBFile will be permanently deleted.

6.5. Permissions

The Zumero Server needs the same read/write permissionsthat you have configured for other applications
that use the data. Y ou should give it accessto only the data you expect your Zumero clients to modify.

VIEW SERVER STATE

Zumero requires that the Vi EW SERVER STATE permission is granted for both the Zumero Server and for
any other applications that will modify synchronized tables. This allows Zumero to correlate SQL Server
transaction | Ds with Zumero transaction IDs.

Zumero installs triggers that call sys.dm tran_current _transaction to retrieve the ID of the
current SQL Server transaction. Because these triggers will be fired by anyone who changes data in a
synchronized table, it's important that you grant this permission for all users and groups who will alter
datain synchronized tables.

IDENTITY_INSERT

If any synchronized tablehasan IDENTITY column for its primary key, the Zumero Server will issue SET
| DENTI TY_I NSERT commands on that table in a few special situations, detailed below. The permissions
required to perform SET | DENTI TY_I NSERT state that the user "must own the table or have ALTER
permission on the table."

The first situation where SET | DENTI TY_I NSERT is used is as follows. Two clients are both in sync.
Oneclient deletesarow (in atablewith an IDENTITY primary key) and syncs. The other client modifies
the same row and syncs. In this situation, the Zumero Server's default behaviour is to "restore the row
with the new contents" (though this can be changed from within the Conflict Rules dialogue). When the
Zumero Server restores the row, it will use SET | DENTI TY_I NSERT in order to restore it with the same
IDENTITY value that it had before.

The other situation where SET | DENTI TY_I NSERT may be used can arise on a table that has both an
IDENTITY primary key and aforeign key constraint on aNOT NULL column. If aclient deletesarow in
the parent table but does not delete its children in the aforementioned child table (instead having assigned
them anew parent) and then syncs, when the Zumero Server importsthis changeit will DELETE the child
row(s) and re-INSERT them with the new parent. Once again, it uses SET | DENTI TY_I NSERT in order
to retain the original IDENTITY value(s).

6.6. SQL Server Triggers

As noted in the Warnings section, ZSS will not replicate SQL Server triggers to SQLite on the client
devices. Furthermore, some care must be taken to ensure that triggers on synced tables will be compatible
with Zumero.

6.6.1. Trigger Order

When adding a table to the DBFile, ZSS Manager callssp_set tri gger or der to set Zumero's update
trigger as"First". If this step fails, the table will still be added, but awarning isissued: “ Unable to set the
Zumero trigger as First. If any update trigger on this table changes the table before the Zumero trigger

38

http://technet.microsoft.com/en-us/library/ms186327.aspx

ZSS Manager: User Guide

runs, seriousdata corruption may occur. Check your trigger order, and make surethat any updatetriggers
that change the data in the table are run after the Zumero trigger.”

The data corruption in the table arises when there is an update trigger on the table that performs another
update operation within the table (for example, to keep a timestamp column up-to-date). If you do not
have any update triggers on the table that update the table (and know that you never will) this warning
can be ignored.

If, on the other hand, you have any update triggers that update the table, these triggers must be set to
execute after Zumera's trigger. If a non-Zumero update trigger executes before Zumerao's update trigger
and then performs an update within the table, Zumero will store the wrong versions the updated rowsin
its record of the table's history. This corrupt historical data could then be used when performing conflict
resolution (e.g. in aColumn Merge), which then produces corrupt datain the live table in surprising ways.

6.6.2. Trigger Output

Triggers that issue counts or PRINT statements have been known to interfere with the Zumero server's
connection to the database.

Make sure that a SET NOCOUNT ON statement is executed at the beginning of each trigger, and remove
any PRINT statements.

6.6.3. Incompatible Triggers

Some triggers that change the effect of the executed SQL may prove to be incompatible with Zumero. In
particular, watch out for following situations:

» INSTEAD OF INSERT triggers must insert the same number of rows as the original INSERT,
and the rows must have the same primary key values as were originally being inserted.

» AFTER INSERT triggers must not delete any of the inserted rows.
» INSTEAD OF UPDATE triggers must update the exact same set of rowsasthe original UPDATE.
» INSTEAD OF DELETE triggers must delete the exact same set of rows asthe original DELETE.

6.7. Database Schema Changes

Once a table has been added to a Zumero DBFile, most schema changes will be detected automatically,
and propagated to the client on the next sync.

Tablesmay be renamed; columns may be added, dropped or renamed; foreign keys may be added, dropped
and modified; constraints and data types may be changed, etc.

6.7.1. Deployment Tips

Asisthe case for any database-backed app, schema changes are a pain. Generally speaking, you have to
deploy the new schema and the app changes to support them simultaneously. ZSS has no silver bullet for
this issue, but we've attempted to make schema changes in Zumero-enabled databases no more difficult
than they already were. When you change the schema of a synchronized table, clients pull down the new
schema on their next sync. So your client app needs to be capable of dealing with the new schema before
it's applied to the production database. For a simple change, you'd do something like this:

» Make your schema changes in your devel opment database.

» Update your app to handle the new schema using the development database. Y ou have several
options here. The best choice depends on the scope of the schema changes and your app
deployment scenario:

« Make the app capable of dealing with both the old and the new schema. Deploy the app
first, then run the schema change scripts in production.

39

ZSS Manager: User Guide

» Make the app capable of dealing with only the new schema. Deploy the app and
the schema changes "simultaneously,” where the definition of simultaneous fits your
deployment scenario.

¢ Add schemaversionsto your database (e.g. smply atable with a schemaversion number
that you create) so the app can make more sophisticated decisions based on the schema
it sees.

6.7.2. Renaming a Table

The standard sp_renane procedure cannot be used to rename synchronized tables. If attempted,
SQL will issue an error message stating "Object '[dbo].[foo]' cannot be renamed because the object
participates in enforced dependencies." To work around this limitation, Zumero provides a stored
procedurezumer o. RenanmePr epar edTabl e which can be used to do the rename. For example, to rename
table[f oo] to[bar] inthe[dbo] schema, issue the command:

EXEC [zuner o] . [RenanePr epar edTabl e] 'dbo', 'foo', 'bar';

6.7.3. Adding a Column

When you add a new column to a table, Zumero will not add that column to client devices unless you
explicitly tell it to start syncing the column. This can be done from ZSS Manager's "Choose Columns..."
diaog for that table. You can also tell Zumero to start syncing a column by calling a Zumero-provided
SQL stored procedure. This could be called directly from within the same SQL script being used to add
the column. For example:

BEG N TRANSACTI ON;

ALTER TABLE [dbo].[foo] ADD [c] int;

EXEC [zunero] . [Start Synci ngCol umm] 'dbo', 'foo', 'c';
COW T TRANSACTI ON;

Similarly, Zumero provides a St opSynci ngCol umm stored procedure which alows you stop syncing
a certain column without removing it from the server database. When this is used, the column will be
removed from al client devices, and Zumero's history and housekeeping data for that column will be
removed from the server aswell.

6.7.4. Warnings

Many schema change operations will cause Zumero to drop and re-create its triggers on the host table.
When this happens (as when first adding the table to the dbfile) sp_settri ggerorder isused to set
Zumero's update trigger as "First". If sp_set tri gger or der fails, awarning isissued saying “ Zumero
Warning: Unable to set trigger as First. If any update trigger on this table changes the table before the
Zumero trigger runs, serious data corruption may occur. Check your trigger order, and make sure that
any update triggers that change the data in the table are run after the Zumero trigger.”

This warning message is referring to the fact that an update trigger that performs updates within the table
will cause data corruption if it executes before Zumero's trigger. This is described in more detail in the
Trigger Order section.

Additionally, certain other warnings may be issued similar to the warnings when adding the table, in
particular when altering a column of a data type that may require special handling by Zumero clients.

6.7.5. Problematic Schema Changes

Inasynchronized table, the references and triggers created by Zumero will prevent certain schemachanges
from succeeding, including:

40

ZSS Manager: User Guide

Altering or dropping the primary key column.
Removing the tabl€'s primary key constraint.

Dropping the synchronized table. (In order to drop a synchronized table, you must first use ZSS
Manager to stop syncing the table.)

There are other changes which Zumero does not prevent from happening, but which put the database
into a state that Zumero does not support. When this happens, all Zumero clients will receive a

"server_|

misconfiguration” error every time they try to sync with the affected DBFile. Schema changes

in this category include:

Finally,

Changing the type of a Zumero-synchronized column to one of the unsupported types.

Creating acircular foreign key dependency between synchronized tables. (For example, Table-A
has aforeign key referenceinto Table-B and Table-B has aforeign key reference into Table-A.)

Adding asame-table reference constraint in asynchronized table whose primary key isan identity
column.

certain other schema changes are supported, but can cause trouble if you're not careful. These

include the following.

If you drop or rename a column that is referenced by afilter's Row Exclusion WHERE Clause,
the users specified for that filter will be unable to sync until the WHERE clauseis updated. They
will receive an "http_500" error (Internal Server Error).

It is possible to add a foreign key constraint on a syncing column which references a column
that is not synced. When thisis the case, the client has no way to enforce the constraint and will
receive a"foreign_key_constraint_violation" error on sync if it has inserted an invalid value.

If you add a NOT NULL column that does not have a default value, clients will not be able to
push inserts into the table until you have either started syncing the column with Zumero or else
givenit adefault value.

When changing acolumn'sdefault value, it isimportant to note that while most default valuesthat
are simple expressions will be synced to the client, some default values will not. ZSS Manager's
Errors and Warnings dialog will show warnings about default values that won't sync, but when
atering them using SQL no warning will be issued.

Most of these issueswill be listed on the Errors and Warnings dial og.

6.8. Data Type Conversion and Limitations

In order to maintain compatibility between the SQL Server and mobile (SQLite) copies of your data,
certain column types involve type conversions and/or content limitations to ensure that:

SQL Server rows will arrive intact on the mobile side
SQLite rowswill arriveintact in SQL Server
Datawill "round trip" properly between the two ends

Equivalent column values added on both ends will be equal to each other

SQL Server Type SQLite Conversions Restrictions
Type
CHAR, NCHAR t ext Values added from

SQLitewill be padded
to the full column width

41

ZSS Manager: User Guide

SQL Server Type

SQLite
Type

Conversions

Restrictions

(with the exception

of NULL values).

SQL Server will
automatically pad
strings to match the
fixed column width,

S0 Zumero mimicsthis
behavior on the mobile
side.

This appliesto fixed-
width fields only;
VARCHAR and NVARCHAR
will not be automatically
padded.

MONEY, SMALLMONEY

SQL Server stores
noney values as
ten-thousandths of a
monetary unit. The
mobile data will reflect
that ten-thousandth
value, not the whole.

For example, assuming
dollars as the monetary
unit, adding $2. 75 on
the SQL Server side
would result in acolumn
containing 27,500 in the
mobile database.

Similarly, adding

10, 000 in SQL ite
would result in $1. 00
being stored in SQL
Server.

DECI MAL, NUMERI C

DECI MAL and NUMERI C
types are converted to
integers when saved in
SQL.ite by multiplying
by 10"scale. The
integers are divided

by the 10"scale for
conversion back to SQL
Server.

For example suppose we
have a DECI MAL(10, 5)
column (5isthe scale)
A value of 12.34 in SQL
Server would be stored
as 1,234,000 in SQL.ite.

Zumero does not support deci mal
or nuner i ¢ columns with precision
greater than 18. 64-hit integers are
used in the client SQL ite database,
and precisions greater than 18 will
overflow them.

42

ZSS Manager: User Guide

SQL Server Type

SQLite
Type

Conversions

Restrictions

DATE

t ext

In order for date values to be
interpreted identically on both the
SQL Server and SQL.ite sides, when
adding dates to mobile databases,
you must use YYYY- M\t DD format.
All other (non-NULL) values will be
rejected at | NSERT/UPDATE time.

TI ME

t ext

In order for time valuesto be
interpreted identically on both the
SQL Server and SQL.ite sides, when
adding times to mobile databases, you
must use one of the following time
formats:

* Whole seconds; HH: MM SS

* Fractional seconds,
from 3 to 7 digits:
HH: MM SS. sss[s{ 1, 4}]

All other (non-NULL) values will be
rejected at | NSERT/UPDATE time.

DATETI ME

t ext

In order for datetime values to be
interpreted identically on both the
SQL Server and SQL.ite sides, when
adding times to mobile databases,
you must use one of the following
formats:

e Minutesonly: YYYY- M
DD HH: MMor YYYY- MV
DDTHH: MM

* Whole seconds; YYYY- M\
DD HH: MM SSor YYYY- MV
DDTHH: MM SS

 Fractional seconds, from 3
to 7 digits: HYYYY- M DD
H: MM SS. sss[s{1, 4}]or
HYYYY- MVt
DDTH: MM SS. sss[s{1, 4}]

Note

Inall cases, the"T" isa
literal letter "T", which may
be used interchangeably
with " " asthe date/time
separator. For example,
12:55pm on January 10,
1982 may be represented as

43

ZSS Manager: User Guide

SQL Server Type SQLite Conversions Restrictions
Type

either 1982- 01- 10 12: 55
or 1982- 01-10T12: 55.

All other (non-NULL) values will be
rejected at | NSERT/UPDATE time.

UNI QUEI DENTI FI ER bl ob The

uni quei dentifier
typeis stored as a 16-
byte blobin SQL.ite
(matching the 16-byte

value stored on SQL

Server).
GEQVETRY, bl ob These .net object Do not insert arbitrary binary data, or
GEOGRAPHY, types will be stored modify synced data, unless you are
HI ERARCHYI D in their default binary | absolutely certain you know what

representation. you are doing. Data which cannot be

Interpretation of these | properly deserialized will cause sync
valuesisup totheclient |operationsto fail.

application.
If columns of these types aren't

strictly needed on the client, itis
safest to exclude those columns from

sync.

6.8.1. Working with uniqueidentifier Columns in Client Databases

A uni quei dent i fi er column isstored in the client SQLite database as 16-byte binary values, just like
in SQL Server.

Y ou can use SQLite'sr andonbl ob function to create new uniqueidentifier values:
insert into ny_table (my_guid_col, my_text_col) values (randonbl ob(16), 'nmy data');

However, SQL Server developers are accustomed to seeing uniqueidentifier values (GUIDS) in their
standard textual representation. For example: EA296149-4E9A-4DB7-9944-F3459931140C. For the
purposes of display and litera values with the uniqueidentifier data type, SQL Server automatically
converts to/from this textual representation.

But SQLite does not have built-in support for this textual representation of a 16-byte blob. If you ask
SQLiteto SELECT thevalue of 16-byteblob, youwill get 16 binary bytes. It will not automatically convert
to the textual representation typically used to display a GUID.

SQLite does have ahex function which can be used to get atextual representation in hexadecimal:
sel ect hex(my_guid_col) from ny_tabl e;

However, this will result in a textual representation which is different:
496129EA9A4EB74D9944F3459931140C. The dashes are missing. And the byte order is different as
well.

Microsoft's GUID format uses little endian byte order for the first three fields of the GUI DC. In the first
three fields, the order of hexadecimal pairsisreversed as follows:

6 http://en.wikipedia.org/wiki/Globally_unique_identifier

http://en.wikipedia.org/wiki/Globally_unique_identifier

ZSS Manager: User Guide

SQL Server GUID Raw Hex
AABBCCDD- EEFF- GGHH- 1 1 JJ- KKLLMVNNOOPP | DDCCBBAAFFEEHHGG | J J KKLLMVNNOOPP

EA296149- 4E9A- 4DB7- 9944- F3459931140C |496129EA9A4EB74D9944F3459931140C

The differing textual representations also come into play when using a uniqueidentifier value as aliteral.
If you try to do thisthe normal SQL Server way:

insert into ny_table (my_guid_col) values ('EA296149- 4E9A- 4DB7- 9944- F3459931140C) ;

... you will get an error. For SQLite, the GUID value shown is a string literal, not a GUID value, and
SQLitewill not automatically convert to a 16-byte blab.

Use SQLite's binary literal syntax to specify auniqueidentifier value:

sel ect my_text_col frommy_table
where ny_guid_col = x'496129EA9A4EB74D9944F3459931140C ;

insert into ny_table (nmy_guid_col, ny_text_col)
val ues (x' 496129EA9A4EB74D9944F3459931140C , 'ny data');

update ny_table set ny_text_col ='test123'
where ny_guid_col = x'496129EA9A4EB74D9944F3459931140C ;

7. Advanced Topics

7.1. Multiple Database Configurations

In the simplest configuration, ZSS server will point to a single database containing both its configuration
data and your application data.

\\“_—_——,,/
\\“_—_——,,/
\\“_—_——,,/

S0L Database

N— -

The database specified during ZSS configuration will be your application's data store. Y our Zumero log
files, users, and configuration and housekeeping data will be stored here.

45

ZSS Manager: User Guide

Another possible configuration is multiple ZSS server instances, each pointing at its own database.

S0L Database

\‘-"‘--.__

S0L Database

\‘-"‘--.__

This would be configured through the ZSS Server Configuration tool.

Each instance runs on a separate port, and behaves just as the smple version above: one server instance,
one database, al your data and Zumero's data in the same place.

If your application's data spans multiple databases, or if you simply wish to keep Zumero's configuration
separate from the application data, you may choose to use a multiple database configuration.

S0L Database DEFiles > S0L Database

In this case you will again configure ZSS Server to point at a single database. This database may or may
not contain application data as well. It will contain Zumero configuration data, including pointers to the
databases and tables where your data is stored.

Thisdatabaseisreferred to asthe Primary ZSS database. ZSS Server isalways connected to this database.
ZSS manager will also always be connected to this database.

Both ZSS Server and ZSS manager may also connect to other databases where your application data are
stored. These data may exist solely in one or more other databases, or some may exist in the primary
database as well.

Inall cases, when referring to the databases storing your application's data, we refer to these as Secondary
databases. They contain application data, Zumero historical information, and optional user information;
but they do not contain Zumero configuration or logs (unless also acting as a Primary).

46

ZSS Manager: User Guide

Above we see a sample database structure consisting of a single primary database with configuration
data only, and a single secondary database containing application data. Note that the ZSS server has been
configured to connect to the primary database; it finds the secondary databases viathe Primary.

Secondary databases may reside on the same SQL Server asthe Primary database, on another SQL Server,
or both.

fepuooag

S0L Database

S0L Database < DEFiles S0L Database DEBFil

In this more-complex scenario we have a primary database which also includes application data. This
may have started as asimple, single-database ZSSinstallation. An additional secondary database has been
added.

Notethat when creating aDBFile, or adding tablesto that DBFile, wewill alwaysbeworking with asingle
secondary connection. DBFiles cannot span databases.

Let'slook at how this configuration would behave in ZSS Manager.

P4 Select the Primary Zumerc Database - O d
Which database should Zumero use to store its log files and database mappings?

This should be the same database specified in your Zumero Server configuration.

demo ~

Select Database

Here, we are connecting ZSS manager to our primary database -- the same database configured for ZSS
Server. At the moment, we're also connected to that same database as our Secondary connection.

Current DBEFile:
demo ~
demo
remotedbfile (otherdb)

Table Actions -

Looking at thelist of available DBFiles, we see that some of them are "remote" -- they livein a secondary
database ("otherdb™") to which we're not connected at the moment.

When we select one of these DBFiles, ZSS Manager's Secondary connection is changed automatically to
the database housing that DBFil€'s data.

The DBFilelist now shows this DBFile as "local", and our previous DBFile as remote.

47

ZSS Manager: User Guide

The status bar shows which server(s) and database(s) you are currently connected to. The primary
connection is listed first, and secondary (if any) is listed second:

3¢ Connected: localhost(demo/otherdb)

7.2. Migrating ZSS Configuration between Servers

7.2.1. What is Migration?

For most projects, you'll have (at least) a development Zumero server and a production server.
You'll test things out, create and change DBFiles, tweak filters, find just the right back-end schema,
etc. in the development environment. At some point, though, you need to move that setup into
production — preferably without having to go through all of the Zumero configuration steps again. ZSS
Migration handles that.

7.2.2. What does Migration do?

ZSS can migrate, on a DBFile-at-a-time basis:

* The definition of the DBFile itself

* The tables synchronized with that DBFile

* Row and column merge conflict rules defined for that DBFile

+ Column and table exclusions

* Where-clause filters

» Usersdefinedin zumer o. users

» Permissions associated with migrated users

* Permissions associated with "Anyone" or "Any Authenticated Users'
» "table2" authorization dependencies on other DBFiles

7.2.3. What doesn't Migration do?

ZSS Migration (like ZSS in general) doesn't create or alter your underlying data. In particular, Migration
will not:

» Createyour tables

Add columns missing from the destination tables

Change data types to match the source tables
» Start Synchronizing tables that are missing columns synced in the source DBFile

» Migrate or create user tables other than zuner o. user s

7.2.4. Using ZSS Migration

Select the DBFile that you wish to migrate. From the menubar, choose DBFile -> Migrate DBFile

48

ZSS Manager: User Guide

Fd 755 Manager — d x
File DBFile Tools Help
B3] # CreateaDBFile "y B T @
A DEFile is a collection of SGL Server database tables that are synced together into a Current DEFile:
single SGLite database on the client device. demo o
Synchronized Tables
Add Tables to the "demo” DEFile... Table Actions
Table Schema lzsues
I, chemical_elements dbo 1 wamings
License Status: Expires 2113-11-18 47 Connected: may(demo)

In this example, we're migrating the deno DBFile in the deno database on may

To begin, select Migrate the current DBFile... from the DBFile menu.
p4 755 Manager

Eile | DBFile | Tocls Help

Y . Create New DBFile...

A DEFi Users & Groups... Ctrl+U
single £ Configure Filters... Ctrl+L

S)w| Migrate DEFile... |
Delete DEFile...

Ad

Our first step is to select the destination database for the migrated DBFile. This would be the primary
database, e.g. the one that your production ZSS Server is configured to use.

49

ZSS Manager: User Guide

Fd Migrate the 'demo’ DBFile ? x

This form allows you to migrate the cumrent DBFile's configuration — synched tables, fitters, column exclusions,
permissions —to another 255 server,

Your application’s tables must already exist in the destination database, and should match the synched tables in
the source databasze.

Choose the destination 755 Server

Selected ‘otherdb’ on ‘may’

Cancel MNend

We've chosen the ot her db database.

Next, we need to select the database where your datalivesin the destination environment (i.e. the secondary
database)

Fd Migrate the 'demo’ DBFile ? x

You have selected the "primary" Z55 database for your destination. This is the database that Z55 Server will
connect to and read.

Your actual data may be stored in a separate database. If s0, choose the other database (or server) below, and be
aware that this configuration will require an appropriate Zumero license.

(® My tables are in the otherdb database

(O Mytables are in another database on the may server:

() My tables are on another server: Choose

In this database:

Cancel Prev MNend

We have an all-in-one setup here, but you could choose any supported multi-database configuration.

By default, if azuner o. user s tableisfound alongside your datatables, ZSS Manager will migrate those
userstothematching zuner o. user s tableat the destination. Y ou can choose not to do thisif, for example,
you're moving from adevelopment environment full of dummy usersinto aproduction environment where
things need to be more locked-down.

If you choose to migrate these users, you can either:

» Migrate the passwords along with the usernames, thus allowing the samelogin credentialsin both
environments. Or...

50

ZSS Manager: User Guide

» Use scrambled passwords in the new environment. In this case, you'll need to explicitly change
the passwords on any migrated users that will actually be authenticating and syncing.

Randomized passwords spare you from re-creating your users (and their associated permissions) without
compromising security. Only those users you specifically edit will be allowed to actually do anything.

Fd Migrate the 'demo’ DBFile ? x

User Migration Options
Migrate users in the zumero users table

If you are using table authentication via the local zumero users table ihe default), checking this box will copy
those users to the zumeno users table in the destination database.

¥ unchecked, the users will not be copied, nor will any Fitters or Permissions associated with those users. Filters
and Pemissions for "Amyone” or "Any Authenticated User” will always be copied.

Randomize passwords for migrated users

When copying users, checking this box will give the destination users randomized, inaccessible passwords.
You will need to explicitly set new passwords (via the Users and Permissions dialog) for any copied users.

¥ unchecked, the passwords from the source zumero users table will be copied to the destination.

Cancel Prev MNend

Here, we're migrating users for convenience, but scrambling their passwords for safety.

We're aimost ready to migrate our configuration, but first we need to be sure we can migrate safely. To do
s0, click Check for Issues. If any errors are found (missing columns, etc.) migration won't proceed until
they are corrected.

Fd Migrate the 'demo’ DBFile ? x

Ermors

Wamings

Check for lssues No emors were found. Click "Migrate” to migrate this DBFile.

Cancel Prev Migrate

No problems here. We're ready to go.

We click Migrate, and see a series of status messages as the migration proceeds.

51

ZSS Manager: User Guide

Fd Migrate the 'demo’ DBFile ? x

Beginning migration_
Creating DEFile_

Migrating tables

Migrating zumero users table_
Migrating zumero users table_
Migrating pemissions__.
Migrating Fitters_

Migrating Conflict Rules_
Success!

CE Prev Cloze

This migration completed successfully.

If we connect to the ot her db database and load the deno DBFile, we see the same synchronized table...

Fd 755 Manager — d x
File DBFile Toocls Help
B3] # CreateaDBFile "y B T @
A DEFile is a collection of SGL Server database tables that are synced together into a Current DEFile:
single SGLite database on the client device. d
emo
Synchronized Tables
Add Tables to the "demo” DEFile... Table Actions
Table Schema lzsues
I, chemical_elements dbo 1 wamings
License Status: Unknown 2 Connected: may(otherdl) .

Including a column exclusion carried over from the source...

52

ZSS Manager: User Guide

Fd Columns for [dbo].[chemical_elements] — O *
This dialog lets you choose which columns from the [dbo] [chemical_elements] table are included
when clients sync. Settings here apply to all users, regardless of their fitter settings. Primary key
columns must be synced.

Column Type Status Mezsage ~
atomic_number int must be synced Primary key
symbaol nvarchar synced
name nvarchar synced
atomic_mass nvarchar nat synced
electron_configuration nvarchar synced
electroneqativity numeric synced Column electronegativit
atomic_radius int synced
ionic_energy int synced
standard_state nvarchar synced

]
e i s ——ena
< >
Start syncing [atomic_mass]

Users, filters and permissions are all in place, aswell.

Modify Group

Group name:

Anyone

Group Members

Anyone

Madify...
Permiszions
DE Filee demo

Synchronized Table:
(Any) ~

Add Rows Allow
Delete Rows Allow
Madify Rows Allow
Pull Allow

Add Rows
User may add new table rows.

7.3. Audit Trails

Whenever Zumero uses rules to resolve a conflict, it alters data. For diagnostic purposes, it preserves an
audit trail of all such changes. This information can be used to verify that your conflict resolution rules
are behaving in the manner you expect.

53

ZSS Manager: User Guide

The audit trail is stored in the zuner 0. audi t table, located in the same database as the DBFile being
synced.

Each row of the audit table contains the object_id of the host table plus four versions of the conflicting
row, each one serialized as JSON.

Column Description

t bl the object_id of the host table

ancest or the row asit appeared before the conflict happened
al ready the row modified by thefirst client

i nconi ng the row as modified by the second client

resul t the row with its conflict resolved

The audit trail table is designed only for the purpose of having a place for the Zumero server to keep a
chronicle of any changesit makesduring conflict resolution. It will INSERT rows, but it doesnot UPDATE
or DELETE. You should not INSERT or UPDATE anything in zuner o. audi t . You may, however,
DELETE rowsif you want to save space.

7.4. The Server Log

The Zumero server logsal client requestsinto thezuner o. | og table, locatedinthe primary ZSS Server

database.
Column Description
url The URL requested by the client.
i p_address The IP address of the client making the request
uni x_time The time of the request as unix time 2
request _si ze The size of the package being pushed from the client, in bytes
response_si ze The size of the response package being sent back down to the client,
in bytes
st at us The HTTP status code of the response
¢ 200 -- successful request, response package sent back to the
client
e 204 -- successful request, no response package sent back
e 304 -- /pull, but nothing new to send back
¢ 401 -- authentication failed
e 403 -- permission denied
* 406 -- database constraint violation
el apsed The amount of time necessary to process the request, in milliseconds

& http://en.wikipedia.org/wiki/Unix_time
7.5. Upgrading ZSS
The recommended order in which to upgrade ZSSis:

1. Upgrade ZSS Manager

http://en.wikipedia.org/wiki/Unix_time

ZSS Manager: User Guide

2. Connect to your SQL Server database with ZSS Manager, and follow the upgrade prompts (see
below). If you have multiple primary databases, you may want to examine them all for upgrades.

3. Upgrade your ZSS Server.

4. Replace the client libraries that you're using. Rebuild your app and redeploy. When the client
does the first sync, it should upgrade the client database.

Older clientswill sync with anewer server, but the reverse is not true.

When you first connect your upgraded ZSS Manager to a database that was previously used with ZSS,
you'll may see the Upgrade DBFiles dialog:

Fd Upgrade DBFiles — d x

These DBFiles need to be upgraded in order to be accessed by the
|atest Zumero Server version. Mo data will be modified, and your
Zumero Server will remain compatible with older Z55 clients.

Cancel

Clicking Upgrade will begin a table-by-table upgrade process, as ZSS Manager updates each table's
triggers and housekeeping data. Once this process is complete, the tables are ready for use with your
upgraded ZSS Server.

7.6. Editing DBFile Connection Strings
To edit a DBFile's connection information, select DBFile Connection Strings... from the DBFiles menu.

You'll see alist of DBFiles and their connection information. DBFiles in the same database as the ZSS
Primary connection will usually have empty connection details; thisis as expected.

Jd DEFile Connections - O *

It is possible to have the Zumera server direct requests for certain dbfiles to other SQL Servers ar
databases. The mappings are stored in the primary database.

dbFile Server Datab.. Connection..
remotedbfile localhost otherdb zssdbiotherdb

Done

Double-click alist item to edit it. There are two variations of connection details.

55

ZSS Manager: User Guide

7.6.1. Use the Primary Database Connection

Thisisfor DBFilesthat live on the same database server as the Primary ZSS database. In these cases, you

only need to edit the name of the database. ZSS Server will connect using the primary connection string,
then switch to the Secondary database.

F4d DEFile Connection

- O d
DEFile Name: remotedbfile

@ Use Primary Database Connection 5tring
Connect via the Primary Z55 connection.

O Use Custom Connection Details
Connect using a specific ODEBC string.

Connection:
SQL Server: lacalhost
Database: otherdb

SQL Server Authentication

Username
Passwaord
Connection String:

Driver={5CL Server Mative Client 11.0};5erver=localhost;Database=otherdb

Cancel

7.6.2. Custom Connection Details

Thisisfor DBFilesthat live on a different database server than the Primary ZSS database, or any DBFile
for which you need to use different credentials. Here you'll build a full ODBC connection string.

Fd DEFile Connection

— d x

DEFile Mame: remotedbfile

O Use Primary Database Connection String
Connect via the Primary Z55 connection.

@ Use Custom Connection Details
Conned using a specific ODBC string.

Connection:
SQL Server: |othersenrer |

Database: |otherdb |

Windows Authentication
Username
Password

Connection String:

Driver={50L Server Mative Client 11.0}:Server= othersenter;Database=otherdb;Trusted_Connec|

Test Cancel

You can use the Test button to try connecting using the connection string before clicking OK to save it.

Be aware that, depending on your system configuration, the connection string needed by the ZSS Server
may not work from the system on which ZSS Manager is running.

ZSS Manager will still allow you to save the connect information without testing, or when the test fails.

56

ZSS Manager: User Guide

7.7. Recovering from a Database Rollback

If your Zumero-enabled SQL Server databaseisever rolled back to aprevious state (e.g. by being restored
from a backup), then it is possible that some of the Zumero clients will have changes that used to be on
the server but have been rolled back. Furthermore, such clients may have made additional changes which
were never pushed to the server.

When a call to zuner o_sync() on aclient device detects that the server was rolled back to a point in
time before the client's baseline, it will send a"recovery package" to the server. By default, the server will
reject the recovery package and the sync will fail withaser ver _r ol | back_det ect ed error. Obviously,
this situation is not ideal since the client will never be able to synchronize that local copy of the database
again. Their only option would beto start abrand new client database and sync from scratch. ZSS Manager
can be used to change this behavior so that the client's sync can succeed, and possibly even restore lost
changes back into the server database's host tables. The settingsthat affect how the server and client behave
after a server rollback can be accessed in ZSS Manager using the "DBFile" menu's "Database Rollback
Recovery..." item.

A successful import of a recovery package will apply all rolled back INSERT, UPDATE, and DELETE
operationsthat the client knew about in al tablesin the DBFile. All of the recovery operations are applied
within a single transaction and committed as an atomic operation. If that commit succeeds and the client
also had additional never-pushed changes, those changes will be attempted in a second transaction.

Note

When recovering INSERT operations in a table with an IDENTITY primary key, the identity
values of theinserted rows may be different than they were before the rollback.

7.7.1. Permissions

The first setting in the Rollback Recovery dialog is a permissions setting. In order for the server to import
a recovery package from a client, authenticated users must be granted permission to recover the rolled
back changes.

Note

Because the permissions setting in the "Rollback Recovery" dialog allows the client to modify
the host tables, it is best to revert the setting (and thus deny the permission) after al rolled back
changes have been recovered.

Note, though, that even if the client has permission to perform data recovery, the recovery could still fail.
This is because the client might only have afiltered view of the rolled back changes, and because there
might have been new changesto the database after therollback. Thusrecovery could fail dueto aconstraint
violation or aconflict rule setting.

7.7.2. Client Sync Retry Rule

The second setting in the Rollback Recovery dialog controls what will happen whenever a
recovery package is rejected or fails to import for any reason. By default, the server will send a
server _rol | back_det ect ed error to the client, and report details about why their particular recovery
package failed in the Event Viewer entry for the failed sync request. This allows the clients to preserve
their local changes and retry again later.

Ideally, after you have given users permission to recover changes, then all clients will have a successful
sync after all the changes have been recovered. Unfortunately, there are cases where, due to conflicts or
missing changes, some clients are not able to recover. When this happens, you can adjust the client sync

57

ZSS Manager: User Guide

retry rule to "abandon changes on the client device and re-sync from the restore point." This will allow
their syncsto succeed, and they will no longer be stuck getting an error.

It is recommended that when using this option, users are still given permission to recover rolled-back
changes to Zumero. Without this permission, there will be no record of what changes on the client
were rolled back. If, on the other hand, the user has permission to report rolled-back changes, then raw
information from their failed recovery package will be left in the DBFile's r $dunp and r $dunp_r ows
tables. These rows contain JSON-serialized data from the client. Columns requiring conversion will bein
their client-side SQLite format. Datain the r $dunp and r $dunp_r ows tablesis never used by Zumero
itself, and can be deleted at any time.

7.7.3. Extra Client Data Cap

There is one more setting worth mentioning related to recovering from a database rollback. In order to
recover from arollback, the client needs to store a (usually) small amount of extra datain the client-side
database. By default, the client will cap this extra data at "two month's worth of data" (actually sixty-five
days). In other words, clients will be able to recover if the database is rolled back to arestore point up to
sixty-five daysin the past. If the server isrolled back to a point earlier than this "cap”, clients will not be
able to recover any data, and will not be able to get out of the "server_rollback _detected" error state.

Thereis no way to modify this cap from ZSS Manager, however administrators wanting to modify it may
do so by inserting (or modifying) the rule directly in the database. Theruleisstored inthet $r ul es table.
Its "situation™ number is one, and the "action” represents the number of days clients will store.

For example, an administrator desiring to be "safer" and have clients store 100 days worth of data for the
DBFile named "my_dbfile" would issue the command:

I NSERT | NTO zunero. ny_dbfiletrules (sit, act) VALUES (1, 100);

On the other hand, an administrator who is confident that 20 days is enough, and wants to save alittle bit
of bandwidth and client storage space would issue the command:

I NSERT | NTO zunero. ny_dbfiletrules (sit, act) VALUES ('nmy_dbfile', 1, 20);

Finally, an administrator who does not want clients to be able to recover from arollback and wants to use
the minimum amount of bandwidth and storage could effectively turn off the feature by issuing:

I NSERT | NTO zunero.rul es_dbfile (dbfile, sit, act) VALUES ('ny_dbfile', 1, -1);

7.8. Azure Active Directory Authentication

ZSS Manager can connect to Azure SQL using Azure active directory credentials through three different
authentication methods:

e Azure Active Directory - Password

» Azure Active Directory - Integrated

» Azure Active Directory - Universal with MFA support

7.8.1. Azure Configuration

Azure Active Directory, Azure AD Domain Services, and Azure SQL must all be properly configured
to use this authentication method. Additionally if "Azure Active Directory - Integrated" is the desired
authentication method then the machine running ZSS Manager must be joined to your Azure Active
Directory domain.

58

ZSS Manager: User Guide

The configuration of these servicesis outside of the scope of this documentation, but more information on
their configuration can be found in the Microsoft documentation.

https://docs.microsoft.com/en-us/azure/sgl-database/sql -database-aad-authenti cation-configure

Once those services are configured and connecting using your preferred Azure AD authentication method
via SQL Server Management studio has been tested, there is still one more aspect of Azure AD that must
be configured to allow ZSS Manager to connect to your database. An App Registration must be created
in Azure AD for ZSS Manager

. Login to your Azure portal

Select Azure Active Directory from the list of services

Select App Registrations from the list on the left hand side

. Select New Registration from the menu

g~ W N R

. Give the registration a name (e.g. ZSS Manager), Select the account types you wish this
registration to be valid for, and click Register. (Note: The redirect URL parameter can be left
blank.)

6. On the resulting App Registration page, make a note of the Application (client) ID. Thiswill be
needed when configuring ZSS Manager.

7. On the same page, select View APl Permissions
8. Select Add a permission

9. Choose Azure SQL Database, Then selecte Delegated Permission, and check the box for Allow
User Impersonation

10.Next, back on the App Registration page click Redirect URIs.
11.Select Add a Platform, then choose Mobile and desktop applications

12.Check the box for the MASL URI, ensure Treat application asa public client is set to Yes, then
savethe URI.

7.8.1.1. Configure ZSS Manager for Azure

When authenticating with Azure AD, ZSS Manager needs to know the Client ID of the App Registration
that was created in the previous section. ZSS Manager has the ability to keep track of multiple Client IDs
in case your organization had multiple Azure Active Directory Domains.

When first selecting one of the Azure AD Authentication methods you will be prompted to configure your
Azure Client IDs. Take the following steps:

1. Click Yeswhen prompted to configure Azure Client IDs.

2. On the resulting dialog box click the Add button.

3. Enter the Client ID and a name to identify this Client ID, then click the Add button to save this
Client ID.

4. Close the Azure Client IDs dialog.

5. Select the newly created Client ID in the drop down on the connect form.
ZSS Manager is now configured for Azure AD Authentication. During your first authentication attempt
you may receive an error that the user account used has not del egated authority for this app yet. To get past

thisperform an I nteractive authenti cation and the Microsoft Ul will prompt you to grant access. Subsequent
password or integrated logins will no longer receive this error.

59

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-aad-authentication-configure?

ZSS Manager: User Guide

8. Performance Tuning

8.1. Purging History

Imagine this scenario:

 Sarah syncs a Zumero database for the first time. Call this Sync #1
» Several other users make changesin SQL Server.
 Sarah syncs the database again. Call this Sync #2.

During Sync 2, the server will only transfer information about rows that have changed since Sync #1.
It doesn't transfer information about Sync #1, since the client aready has that data. This saves time and
bandwidth.

In order to save that time and bandwidth, Zumero must track all of the changes that happen in SQL Server.
We add triggers to your tables which fire to add rows to the change-tracking tables in the zumero schema
inyour SQL Server. Since the Zumero server doesn't know how out-of-date a client might be, the change-
tracking tables will, by default, contain information for all changes since your table was first added to the
Zumero DBFile.

In some circumstances, the changes come in frequently enough that the change-tracking tables become
large, and cause performance or disk-space problems. The Purge feature in ZSS Manager allows you to
remove information from the change-tracking tables.

8.1.1. Types of Purge

There are two kinds of change-tracking information, Historica and Row Contents. Imagine these
statements:

I NSERT | NTO nytable (id, appliance, color) VALUES (72, 'refrigerator', 'stainless');
UPDATE nyt abl e SET appliance = 'washer' where id = 72;
UPDATE nyt abl e SET appliance = 'dryer' where id = 72;

» Historical Data: Historical rows allow Zumero to distinguish al changes made in a single SQL
Server transaction, across multiple rows and tables. In the example statements above, there are
now threedistinct versions of therow. TheINSERT isrow version 1, thefirst UPDATE isversion
2, and the last UPDATE would create version 3.

» Row Contents: Zumero will store the contents of all old versions of arow. In this case, it would
store one entry with data= 'refrigerator' and one entry with data= 'washer'. It doesn't need to store
an entry for 'dryer’, since that oneis still current.

When you purge, you can choose to purge Row Contents and Historical Data somewhat independently.
Of course, you can't purge Historical Datafor a certain transaction without a so purging the Row Contents
for that transaction as well.

In the example above, purging Row Contents would remove the Zumero data containing the string
‘refrigerator’. Purging Historical Data would remove all Zumero information that version 1 had ever
existed.

8.1.2. Possible Errors After Purging

After you purge, there is an increased chance of your client devices encountering an error. The error will
depend greatly on the state of the client and the type of purge. For client library versions 2.3 and below,
purging Historical Datawill always cause client sync errors.

To illustrate this, imagine Ben, a gentle, WiFi enabled bear. In the fall, Ben synced the latest version of
the database. Ben then fell into a state of hibernation, and slept for six months. During Ben's hibernation,

60

ZSS Manager: User Guide

his Zumero administrator faithfully purged data. When Ben finally awoke in the spring, his database is
now six months out of date.

Fortunately, if Ben hadn't made any changes to his client database before hibernating, he won't see any
errors when syncing again in the spring. If the administrator had purged Historical Data older than six
months ago, Ben will download the entire database again, asif it wasthefirst time syncing with hisdevice.
If the administrator had only purged Row Contents, then Ben will only download the changes in the last
six months.

However, if Ben did make changes before hibernating, he may get an error.

« If the administrator purged Historical Data older than six months ago, then Ben's sync will fail
with a Purged Data Referenced error by default. The administrator has an option to choose to
ignoreall of Ben's changes by selecting the option " The incoming changeswill beignored and the
client will download anew DBFil€" in the Purge dialog. If the administrator chooses that option,
Ben will be ableto sync, but all of his changes will be permanently lost.

* If the administrator kept the Historical Data older than six months ago, but purged the Row
Contents, Ben may or may not get an error, depending on the nature of his changes, and what
happened while Ben was hibernating.

Table 1. Syncing Ben's changes after a Row Contents Purge

Operation made before Changesin server while Ben Outcome

hibernating was hibernating

Ben inserted arow Any changes arefine The row will be inserted into

SQL Server

Ben updated a row Therow was not changed at all | The sync will succeed

Ben deleted arow The row was deleted by someone | The sync will succeed
else

Ben updated arow The row was updated by The sync will fail with an error
someone else

Ben updated a row The row was deleted by someone | The sync will fail with an error
else

Ben deleted arow The row was updated by The sync will obey the Conflict
someone else Resolution setting for the table

8.1.3. Automating Purge

Once you're used to purging, it is possible to automate the process, so that it happens when there isn't a
heavy load on SQL Server. Set up scheduled job in SQL Server to run a statement like this;

DECLARE @ datetinme2;

SELECT @ = DATEADD(nont h, -18, CURRENT_TI MESTAWP) ;

EXEC [zunero] . [PurgeDBFil e] @lbfile="foo', @=@, @urge_history=0; --@urge_history=0
neans purge contents

SELECT @ = DATEADD(nont h, -20, CURRENT_TI MESTAMP) ;
EXEC [zunero] .[PurgeDBFil e] @lbfile="foo', @=@, @urge_history=1; --@urge_history=1
means purge contents and history

8.1.4. Handlig clients getting purged_data_referenced errors

If aclientisin astate where it is getting "purged _data referenced" errors when it tries to sync, there are
afew different ways to proceed.

61

ZSS Manager: User Guide

e The client could quarantine the change using zumer o_quar anti ne_si nce_| ast_sync().
While this would allow the client to sync again, it would effectively abandon al local changes,
asany attempt to usezumer o_sync_quar ant i ne() tore-sendit later would fail with the same
error.

» Of course there is adways the most blunt tool in the toolbox, which is to have the client
delete their client-side database and re-sync from scratch. This is less efficient than using
zumer o_quar anti ne_si nce_| ast _sync() and also abandonsall local changes, but it works.

« If itisknown which rows are causing the error and it is safe to delete them, then the client could
delete those rows. Deleting the rows would change the update operations into del ete operations,
thus allowing the push to succeed, since the server will ignore del etes.

» Finally, special conflict resolution rules can be set on a per-table basis so that the server will
ignore updates to purged row versions while accepting the rest of the client's changes. There is
no ZSS Manager user interface to adjust these rules, so the [zumero].[rules record] table must
be accessed directly. The magic numbers to use are "6" for the "update of purged row version”
situation, and "4" for "ignore". So, for example, the following SQL command could be used to
set the "ignore" rule for our "items' table:

I NSERT | NTO [zumero].[rul es_record] (thl _id, sit, act, extra) VALUES (12345, 6,
4, NULL);

We advise against using this setting because its use can — without warning or error — cause loss
of data (i.e. the client's change) depending on what history has been purged (which from the
client's point of view is unknown and fairly arbitrary).

8.2. Adding Indexes to "z$old" Tables

When using aSQL Server profiler to examine Zumerao's sync performance, your profiling tool may suggest
that adding a certain index to az$ol d table will help. Adding your own index to az$ol d table is OK.
The only caveat isthat such an index may block certain schema changes on the host table, namely DROP
COLUMN changes. Thisis becausethe Zumero DDL triggerswill attempt to drop the same columnin the
z$ol d tableaswell, which will fail if they areincluded in theindex. Because of thispotential conflict with
host table operations, we recommend that you keep custom indexes on z$ol d tables only if they yield a
measurable or noticeabl e speed improvement.

9. Troubleshooting

9.1. Troubleshooting Error 500

A 500 error means that something unexpected happened on the Zumero server. The best way to find out
more information about the error is to log onto the server computer and open Event Viewer. Click on
the Applications and Services Logs -> Zumero -> Admin node. Y ou should be able to find an event that
correspondsto the 500 error. The General tab should contain moreinformation on the error. Some common
problems that can cause 500 errors

9.1.1. Mis-configured SQL Server connection

An incorrect or missing ODBC connection string will cause the server to return 500 errors. To changeit,
perform the following steps:

1. On the server computer, use the Start Menu to open ZSS Server Configuration.

2. Enter the connect string in the ODBC Connection String field. Clicking "Build..." will prompt
you for these values and generate an ODBC string automatically.

62

https://www.howtogeek.com/school/using-windows-admin-tools-like-a-pro/lesson3/

ZSS Manager: User Guide

Example 5. An example connect string

Driver={SQ. Server Native Cient 11.0}; Dat abase={ YOUR DATABASE} ; Ser ver ={ YOUR
SQL SERVER}; Ul D={ YOUR MSSQL USER}; PWD={ YOUR MSSQL PASSWORD}

Note

Please note: the driver isimportant, and will almost alwaysbeDri ver ={ SQL Ser ver
Native Cient 11.0};
Also note that the curly braces are necessary for fields having spaces.

3. Click the Apply button. There should be no need to restart the Zumero server

9.1.2. Insufficient permissions to the SQL Server database

If you are attempting to use Trusted Connection in your connection string, it is possible that the
permissions are not set to allow the Zumero server to connect and make changes to your database. During
testing, it is often easier to use the sa account, asillustrated in the above example connect string.

9.2. Troubleshooting License Errors

The Zumero server can return a number of licensing errors. These errors will be returned in situations
where the license or activation keys are invalid or when the server usage has exceeded limits imposed by
the license key. The license errors will be returned to the clients in the sync response and will be logged
in the Windows Event Viewer. To determine the exact nature of the error, log onto the server computer
and open Event Viewer. Click on the Applications and Services Logs -> Zumero -> Admin node. You
should be able to find an event that corresponds to the license error. The General tab should contain more
information on the error.

9.2.1. Invalid Key Errors

These are a series of errorsindicate that the license or activation key provided in the I1S site's web.config
fileisinvalid or malformed. The most likely cause isthat the license key was copy and pasted incorrectly.
Locate the original copy of your license key and follow these steps:

1. On the server computer, use the Start Menu to open ZSS Server Configuration.
2. Select the lIS site the error originated from.

3. Enter thelicense key in the License Key field.

4. Click the Apply button. There should be no need to restart the Zumero server

If the error was not resolved by these steps contact support@zumero.com

9.2.2. License User Limit Exceeded Error

Thiserror indicates that the number of users connecting to the Zumero server exceeds the limit set in your
license key. The Zumero server determinesthe number of users by examining recent sync activity. In most
cases this error indicates that a new license key needs to be purchased for the increased activity. To do
SO contact sales@zumero.com.

It isalso possible that the Zumero server is still considering users who are no longer active syncing against
the Zumero server. This could happen if you recently deleted users, decommissioned client devices, or
changed authentication methods. In this case Zumero for SQL Server Manager provides a mechanism for
removing these users from your active user list.

1. Open the Zumero for SQL Server Manager application and connect to your primary database.

63

https://www.howtogeek.com/school/using-windows-admin-tools-like-a-pro/lesson3/
mailto:support@zumero.com
mailto:sales@zumero.com

ZSS Manager: User Guide

2. Select Recent Synchronizations from the Tools menu.
Fd Z55 Manager

File DBFile | Tools | Help
M/ Create a Test Client... Chrl+T

Authentication...

A DBFile is a colles] -)
single SOLite data Connection 5Strings...

|_ Recent Synchronizations... |
Synchronized Tabwes

3. Select the user you wish for Zumero to forget in the dialog and click Delete

Fd Recent Syncs

Below is a list of users that have syncronized with the Zumero Server in the last 60 days.

Users: 5 of 0 Search:

Uzername Scheme Last Request

chris {"scheme_type":"table", "table" "users"} 47202016 %55 AM

mitch {"scheme_type":"table","table":"users" 4/12/2016 3:10 AM

lazloh {"scheme_type":"table", "table" "users"} 472172016 £:21 AM

sherry {"scheme_type":"table","table":"users" 4172016 11:23 AM
kent {"scheme_type":"table", "table" "users"} 47152016 %20 AM

