
1

ZSS Manager: User Guide
Copyright © 2013-2021 Zumero LLC

Table of Contents
1. Introduction .. 2
2. Quick Start ... 2

2.1. Connect to ZSS Server's Database ... 2
2.2. Create a DBFile .. 3
2.3. Create a User and Set Permissions ... 5
2.4. Add a Table to the DBFile ... 7
2.5. Ready to Sync! ... 9

3. DBFiles, Defined ... 11
4. The ZSS Manager Window ... 12

4.1. The selected DBFile .. 12
4.2. Add a Table to the Current DBFile ... 12
4.3. The Synchronized Tables list ... 12
4.4. The Test Client Window .. 15

5. Customizing Synchronizations .. 16
5.1. Authentication and Permissions ... 16
5.2. Filters .. 23
5.3. Constraint Violations and Conflict Resolution .. 26

6. SQL Server Considerations .. 34
6.1. Create DBFile ... 34
6.2. Add Tables to DBFile .. 34
6.3. Stop Syncing a Table ... 37
6.4. Delete DBFile ... 38
6.5. Permissions .. 38
6.6. SQL Server Triggers .. 38
6.7. Database Schema Changes .. 39
6.8. Data Type Conversion and Limitations .. 41

7. Advanced Topics ... 45
7.1. Multiple Database Configurations ... 45
7.2. Migrating ZSS Configuration between Servers .. 48
7.3. Audit Trails .. 53
7.4. The Server Log ... 54
7.5. Upgrading ZSS ... 54
7.6. Editing DBFile Connection Strings ... 55
7.7. Recovering from a Database Rollback ... 57
7.8. Azure Active Directory Authentication .. 58

8. Performance Tuning ... 60
8.1. Purging History ... 60
8.2. Adding Indexes to "z$old" Tables .. 62

9. Troubleshooting ... 62
9.1. Troubleshooting Error 500 .. 62
9.2. Troubleshooting License Errors ... 63

ZSS Manager: User Guide

2

1. Introduction

This document was generated 2021-03-18 11:06:41. It explains how to install and use ZSS Manager to
configure SQL Server databases for Zumero synchronization.

ZSS Manager is a component of Zumero for SQL Server. It allows you to configure an existing SQL
Server database for use with Zumero. In combination with the ZSS Server and ZSS Client SDK, you can
replicate and sync your data among multiple devices.

Using Zumero for SQL Server for the first time typically involves these steps:

1. Install ZSS Manager on a Windows development machine.

2. Use ZSS Manager to configure the SQL Server database.

3. Install the Zumero Server on a Windows Server. Configure it to connect to your database.

4. Create a simple client application, or use the ZSS Manager Test Client to perform a test sync
against the server.

This guide focuses on ZSS Manager and step 2.

ZSS Manager works with:

• Windows 7 and later

• SQL Server 2008 R2 and later

This document assumes the reader has familiarity with SQL Server as a developer or database
administrator.

2. Quick Start

Before getting into details, let's take a quick tour of ZSS Manager's features and functionality.

2.1. Connect to ZSS Server's Database

Connect to SQL Server the same way you would with SQL Server Management Studio:

Note

You can always connect to a different ZSS Server via the File / Change Zumero Server... menu. 1

1See the Multiple Database Configurations section for more details on using ZSS Manager with multiple databases and multiple servers.

ZSS Manager: User Guide

3

If this is your first time running ZSS Manager, you'll need to select a database once the connection has
been opened. Choose a database from the drop-down list, then click Choose.

You're now greeted by the main window. This window is where you will configure settings for Zumero
synchronization.

2.2. Create a DBFile

DBFiles are explained in more detail in the DBFile section. For the purposes of this quick start, understand
that:

1. A DBFile is a container for tables, and

2. We need at least one DBFile to sync our data via Zumero.

Select Create a DBFile... from the DBFile menu (or click the Create a DBFile toolbar button.

ZSS Manager: User Guide

4

Once you've entered a valid DBFile name, the Next button becomes active.

2.2.1. Choosing the host database

ZSS Manager needs to know what database contains the tables you'll be syncing. The data may reside
in the same database as the ZSS Server configuration data, another database on the same server, or on
another server altogether.

In this example, we're using data from the same database.

2.2.2. Create the DBFile

The DBFile wizard now reiterates what will happen when you click Next:

ZSS Manager: User Guide

5

After the DBFile is created, we can next Add a Table or Create a User and Set Permissions:

2.3. Create a User and Set Permissions

Now that we have a DBFile, the User Management button is enabled in the main window. Click it to
manage users and set permissions.

ZSS Manager: User Guide

6

The first time you access user management for a given SQL Server database, you'll be prompted to create
the users table and the groups table. Click OK to continue.

Below, we simply allow full access to everything, by anyone. For more details on setting up realistic users
and permissions, see Authentication, Users, Groups, and Permissions.

To allow full access for anonymous sync requests, we double-click the Anyone group and set all 4
permissions to Allow:

ZSS Manager: User Guide

7

2.4. Add a Table to the DBFile

In the main window, click the Add a Table... button to select the tables that you want to synchronize.

Select the checkbox beside each of the tables that you want to add to the DBFile.

ZSS Manager: User Guide

8

The Table Considerations section of this document has more information about potential warnings and
errors.

For each table that you have selected to add, you will be presented with a page to select which columns
will be synced to the client.

The summary page will describe all of the tables that will be added to the DBFile.

Click the Next button to add the tables.

ZSS Manager: User Guide

9

2.5. Ready to Sync!

A Zumero Server configured to connect to the database is now ready to sync DBFile demo which has a
single table chemical_elements. Typically, the other end of the sync will be your mobile app. But ZSS
Manager has a Test Client Window to help out:

ZSS Manager: User Guide

10

In this window, we start off working with an empty, temporary SQLite database. We can sync our test
database into it by clicking the Sync button, which reveals the sync dialog:

Configuring the sync to match our setup:

• Server URL for a local server running on port 8080

• DBFile demo matches the DBFile we created.

• Send authentication information should be unchecked, because we set our test server's permissions
to allow full anonymous access.

We click OK to perform the sync. Back in the test client's window, verify that the table was synced. Now
let's make a change:

ZSS Manager: User Guide

11

Now do another sync, the same way we did above. Examining the chemical_elements table in our SQL
Server database, we can see the name for Hydrogen has changed.

3. DBFiles, Defined

A DBFile is a logical grouping of database tables on the server. A DBFile defined on the server with ZSS
Manager corresponds to a SQLite database file on a ZSS Client.

• A SQL Server database can have one or more DBFiles, but a DBFile cannot span multiple SQL
Server databases.

• A SQL Server table can belong to at most one DBFile.

• Permissions are scoped to DBFiles. A permission may apply to a single table within a DBFile
or all tables in a DBFile.

• A DBFile is the smallest sync-able unit in Zumero. Clients specify a DBFile when calling sync,
and all tables within it are synced.

Note

Permissions and filters can cause the contents of a DBFile to significantly differ based on the
syncing user. On client devices, the SQLite database file corresponding to a Zumero DBFile
should be accessed by only one Zumero user.

If multiple Zumero users will share a single device the app should maintain separate SQLite
database files, opening the correct file based on the logged-in user.

ZSS Manager: User Guide

12

4. The ZSS Manager Window

When starting ZSS Manager, you will be prompted to connect to a SQL Server, and the main window
will be shown.

4.1. The selected DBFile

In the top right of the main window, you will see a combobox listing all of the DBFiles that have been
created in this primary database. If the DBFile contains tables from a different SQL Server database or
SQL Server instance, clarifying details will be shown in parenthesis after the DBFile name.

If you select a DBFile that contains tables from a different SQL Server instance, you will be prompted
to supply connection details.

4.2. Add a Table to the Current DBFile

This wizard adds tables to the current DBFile via these steps:

• Select the tables that will be added to the DBFile.

• For each of the selected tables, a wizard page will give you the opportunity to select the columns
to sync to the client database.

• Show a summary of the tables and columns that will be synchronized.

• After the database changes are complete, the final page will offer a few possible next steps..

4.3. The Synchronized Tables list

This list shows all of the tables that have been added to the selected DBFile. In addition, this list will show
any errors and warnings for the table. The context menu on this list lets you:

1. Choose Columns to synchronize

ZSS Manager: User Guide

13

2. Configure the Conflict Rules

3. Stop Syncing the table

4. View Warnings and Errors

4.3.1. Choose Columns

If your synchronized tables contain some columns that you don't want to be synced to client databases,
you can select the synced columns during the Add Tables to DBFile wizard, or by selecting the table in
the ZSS Manager window and picking the Choose Columns entry from the context menu.

Note that when new columns are added to a table that is already in the DBFile, they are not synchronized
by default. Use the Choose Columns dialog if you wish to include the new column in the client database.

Here we see that:

1. The atomic_number column must be synced, since it is the table's primary key.

2. The remaining columns are currently part of the sync, but could be excluded.

If we choose to Stop syncing [atomic_mass], we'll be warned of the consequences:

Afterwards, the column is marked as "not synced", and when it's selected we have the option to Start
syncing [atomic_mass], just as we would with any unsynced column.

ZSS Manager: User Guide

14

4.3.2. Conflict Rules

This dialog gives you the opportunity to configure the Conflict Resolution settings.

4.3.3. Stop Syncing a Table

If you need to stop syncing a table, you select the table in the ZSS Manager window and pick the "Stop
Syncing" entry from the context menu. It should be noted, however, that this is destructive and shouldn't
be done on live applications with Zumero clients. Any unsynced changes on client databases will be lost,
even if the table is re-added to the DBFile.

• Your data is left alone.

• All Zumero housekeeping data is deleted and the housekeeping tables are dropped.

• Clients will drop their corresponding table on the next sync.

4.3.4. Table Warnings and Errors

The Synchronized Tables list will allow you to see a list of the Warnings and Errors that may impact the
table's synchronization. To get a clear view of the issues, select the table and choose View Warnings and
Errors entry from the context menu.

Selecting one of the errors or issues, you can choose Copy from the context menu to copy the text to the
clipboard.

ZSS Manager: User Guide

15

4.4. The Test Client Window

The Test Client window gives you an environment to experiment with the capabilities of SQLite, and also
test using Zumero to sync changes between the client and server.

When you open the Test Client window, you will automatically be connected to a new, temporary SQLite
database. This database will be deleted when you close the window. If you need to save the SQLite database
between sessions, use the Open SQLite Database and Save Database As items in the File menu.

4.4.1. Syncing Changes

Pressing the Sync button in the Test Client window, the Sync Dialog will come up.

There are two syncing modes, authenticated and anonymous. Authenticated syncs validate against a users
table. In order for anonymous syncs to succeed, you must enable anonymous access to your DBFile.

ZSS Manager: User Guide

16

4.4.1.1. Logging Sync Details

The Log sync details checkbox causes the Test Client to sync with sync_details enabled (see the ZSS
Client API Documentation for details). After syncing, you can query the zumero_sync... tables in the
test client window, in addition to your data tables.

4.4.2. Enabling Important SQLite Features

The Test Client Window enables two SQLite features that are off by default. When you open or create a
SQLite database, it executes these pragma statements. When writing your own client, you almost certainly
want to do the same.

PRAGMA foreign_keys = ON;
PRAGMA recursive_triggers = ON;

Enabling foreign keys means the client database will enforce the foreign key relationships you've defined
in your SQL Server database.

Recursive triggers are necessary for Zumero's triggers to correctly handle SQLite INSERT OR REPLACE
statements.

When creating a new SQLite database, the Test Client Window also enables WAL (Write-Ahead Logging)
mode.

PRAGMA journal_mode = WAL;

WAL mode is strongly recommended for improved concurrency. See Write-Ahead Logging for more
information.

5. Customizing Synchronizations

5.1. Authentication and Permissions

Zumero for SQL Server supports two authentication sources. The first and default authentication source is
called Database Authentication and it stores users and groups in the database. Secondly, Zumero for SQL
Server can use your existing Active Directory as an authentication source.

Each DBFile can have it’s own unique authentication source and by default this source is Database
Authentication. If you wish the change the authentication source for a DBFile select DBFile Authentication
Source... from the DBFiles menu.

The DBFile Authentication Source dialog allows you to configure the default authentication source for
each DBFile. The specific options for each authentication source are covered in more detail in later sections
of this guide.

http://zumero.com/docs/zumero_for_sql_server_client_api.html
http://zumero.com/docs/zumero_for_sql_server_client_api.html
http://www.sqlite.org/wal.html

ZSS Manager: User Guide

17

When syncing with the server, clients must provide an authentication scheme string when calling sync().
When the DBFile default is desired, the following scheme string should be used: 2

{"scheme_type":"default"}

An Example from the ZSS Manager Test Client Window:

From client code, it would look like this:

ZumeroClient.Sync(localFilePath, cipherKey, serverUrl, dbfileName, "{\"scheme_type\":
\"default\"}", username, password);

Zumero for SQL Server does not provide features for managing users, groups, and passwords from
a Zumero client. The user and group tables are never synced to a client. User, group, and password
management occur on the server. ZSS Manager has an interface for managing users and tries to cooperate
with existing applications.

First we'll describe how to set up users and groups in the database and authenticate them.

2For information on other scheme types, see Non-Default Authentication Schemes

ZSS Manager: User Guide

18

5.1.1. Database Authentication via ZSS Manager

Database Authentication is Zumero's default authentication method. This authentication method stores
the users and groups in the database. When first configuring Database Authentication, ZSS Manager will
ask if it can create the default backing tables for Database Authentication. If you allow this, they will be
created as follows:

CREATE TABLE [zumero].[users]
 (
 [id] int IDENTITY(1,1) PRIMARY KEY,
 [name] nvarchar(100) UNIQUE NOT NULL,
 [pass] nvarchar(100) NOT NULL
)

 CREATE TABLE [zumero].[groups]
 (
 [username] nvarchar(100) NOT NULL,
 [groupname] nvarchar(100) NOT NULL
)

Users and Groups that you created via the Users and Groups dialog will be added to these tables. The
passwords are encrypted with bcrypt. 3

Database Authentication has a couple of configurable settings. To access these settings use the following
steps:

• Select “DBFile Authentication Source…” from the DBFiles menu.

• Select your DBFile from the list and click the “Modify” button.

• If not already selected, change the “Authentication Source” pulldown to “Database”.

3 http://en.wikipedia.org/wiki/Bcrypt

http://en.wikipedia.org/wiki/Bcrypt

ZSS Manager: User Guide

19

• Locate Via DBFile: This option specifies the database in which the users will be stored. If you
have a Multiple Database Configuration you can select the DBFile that corresponds to another
SQL Server Database in which user and groups have already been configured.

• Users Table:This option specified the name of the table the users will be stored in. If you have
an existing table containing user information you can change this setting to that table. There are
several caveats when doing this, so read the Database Authentication with Your Own Table or
View below.

5.1.2. Database Authentication with Your Own Table or View

If you already have users and passwords stored elsewhere in your database, ZSS Manager and the Zumero
Server can use them, with some caveats:

• Passwords must be either plain text or bcrypt hashes. (A mix of both in the same table will work.)

• You must create a view, zumero.users, with columns [id], [name], and [pass].

• If you want to use ZSS Manager to alter users and passwords, the view you create must have
insert and update triggers that handle the name and pass columns.

• If you change a user's password with ZSS Manager, it will be encrypted with bcrypt. This could
cause problems for other applications if they're not expecting passwords in this format.

• If you wish to use existing groups, you must create a view, zumero.groups, with columns
username and groupname. This table is used to determine group membership.

• It is strongly recommended that the [id] and [name] columns be unique. Non-unique users will
lead to unpredictable results, or to failed sync.

If you have existing users and passwords in your database but passwords are neither plain text nor bcrypt
hashes, you can still use ZSS Manager to set permissions, which is recommended. Create the zumero.users
view with id, name and pass columns, but write the insert/update triggers such that only the name column
gets updated. This will allow ZSS Manager to change user names and manage permissions, but any
password changes are silently ignored. You can manage passwords outside Zumero, as you did before.

Note

It is possible to use any table or view name for client authentication. Simply specify a different
table when specifying the authentication source for your DBFile.

5.1.3. Active Directory Authentication

Zumero for SQL Server can also make use of the users and groups in your existing Active Directory setup.
This authentication source has the following requirement:

• The machine running the Zumero server and the machine used to run the ZSS Manager application
must be members of your Active Directory domain.

Next, you must configure your DBFile to use Active Directory for authentication.

• Select DBFile Authentication Source… from the DBFiles menu.

• Select your DBFile from the list and click the Modify button.

• Change the Authentication Source pulldown to “Active Directory”.

• Enter the windows domain in the Active Directory Domain field.

Note

Use the fully qualified domain name for your domain, do not use the Windows 2000 compatible
version.

ZSS Manager: User Guide

20

When using Active Directory as the authentication source, the Users & Groups dialog will not be populated
with all of the users and groups from Active Directory. If you wish to add permissions for a user or group
you will need to use the “Add…” button to create an ACL entry for the specified Active Directory object.

No changes are necessary for Zumero clients, they should send the username and password as they
would with Database Authentication. There is a slight difference on the server that is worth noting. At
authentication time the username is converted to the User Principal Name 4 (<username>@<domain>).
This is most notable when using the {{ZUMERO_USER_NAME}} token with filters.

5.1.4. Built-In Groups

5.1.4.1. Anyone

Permissions granted to Anyone apply to all requests: authenticated or unauthenticated.

Note that this is different from a sync request that fails authentication by providing invalid authentication
parameters. Failed authentication requests never have data access of any kind. The only way to explicitly
use the Anyone user is to pass null for all three authentication parameters, as we did in the Quick Start.

5.1.4.2. Any Authenticated User

You may want to set common permissions for any user who successfully authenticates. The Any
Authenticated User allows you to do that.

When using Active Directory as your authentication source, it is recommended for security reasons that
permissions for Any Authenticated User remain set to deny. Instead an AD Group should be created that
includes all of the users you wish to have access to the Zumero sync service.

5.1.5. Permissions

Zumero checks permissions from most to least specific. When an authenticated user Winifred syncs,
permissions are checked in this order:

• the Winifred user

• Any group of which Winifred is a member

• the Any Authenticated User group

• the Anyone group

As soon as either Allow or Deny is found, the checking stops. If no permission is set, the checking
continues. If no match is found the sync is denied.

Note

In the absence of any permissions data, a server is completely locked down: nobody has access
to anything. This is nice and secure, but a bit hostile to newbies. Be sure to set up a user with
rights when getting started.

Zumero syncs are atomic: they succeed or fail as a single unit. This comes into play when permissions are
checked. Say Winifred has modified existing rows and added some new ones. When she syncs, she must
have permissions to do both, or the entire sync will be denied.

Zumero for SQL Server has four permissions:

4 https://msdn.microsoft.com/en-us/library/ms680857(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ms680857(v=vs.85).aspx

ZSS Manager: User Guide

21

5.1.5.1. Pull

Pull is analogous to a read permission. The way to read data from the Zumero Server is to pull it. How
that data is accessed on a client application is up to its developer.

The scope of the Pull permission is the entire DBFile. You can pull all of the tables in a DBFile, or none
of them.

5.1.5.2. Add

A user with Add permission can add new rows. More precisely, when a client having new rows does a
sync, this permission is necessary for that sync request to succeed.

Add may be defined for an entire DBFile, or for a specific table within a DBFile. It's possible, for example,
to let Winifred add new rows to the Customers table but not the Sales table.

5.1.5.3. Modify

The Modify permission allows changes to existing rows.

Like Add, Modify can be set for a specific table or an entire DBFile.

5.1.5.4. Delete

The Delete permission allows deleting existing rows.

Like Add and Modify, Delete can be set for a specific table or an entire DBFile.

5.1.6. Setting up Permissions through Another DBFile (table2 authentication)

By default, authentication is performed by looking up users in the zumero.users table in the same
databases as the DBFile's data. You may wish, however, to authenticate against a table stored elsewhere
-- e.g. when sharing a user table among DBFiles in different databases.

In this case, you'll still need a table in one of those databases. Access to "remote" user tables is always
done by looking up the connection information for a DBFile which lives in the user table's database. In
the Authentication... dialog, you'd select the DBFile and click the Modify button

ZSS Manager: User Guide

22

...which brings up the Select Authentication Source dialog:

Here, we've selected the remotedbfile DBFile as the link to our user data. The Table drop-down now
lists user tables found in the database containing remotedbfile. We're sticking with that database's
zumero.users for now.

The Scheme box contains an authorization scheme string, ready to be used as the scheme parameter in a
client application's sync() call. Copy and paste this code to avoid manually creating a matching scheme
string.

On return to the Users and Permissions dialog, and beginning to Add a user permission entry, we now
see the users from that remote users table:

5.1.7. Non-Default Authentication Schemes

As a rule, it's best to use the default authentication scheme. There are two main advantages:

1. It leaves authentication details in the hands of the server, not the client.

2. It allows the authentication source to change (on the server) without affecting sync, configuration,
or code on the client side.

If necessary (primarily for backwards-compatibility with older versions of Zumero), you can explicitly
specify table or table2 authentication.

5.1.7.1. table Authentication

This is the simplest form of table-based authentication. It uses a named table (or view) in the same SQL
Server database as your application data, with id, name and pass columns as described in Database
Authentication with Your Own Table or View.

The standard Zumero authentication table (`zumero.users`) would be specified by:

{"scheme_type":"table","table":"users"}

ZSS Manager: User Guide

23

In most situations, this will be the same authentication source used by {"scheme_type":"default"}.

5.1.7.2. table2 Authentication

In cases where multiple DBFiles (across multiple databases) will share a single authentication source, you
can use table2 authentication. This works just like table authentication, but adds the name of another
DBFile. The authentication table will be found in that DBFile's database.

If you were going to authentication against the `zumero.users` table in the database hosting the central
DBFile, you'd do so via:

{"dbfile":"central","scheme_type":"table2","table":"users"}

5.2. Filters

ZSS supports filtering tables by row and column based on the syncing user. Filters can be used to reduce
the storage size and bandwidth requirements of an app. They can also be used to prevent sensitive data
from being synced to mobile devices.

Tables may be filtered in the following ways:

• A synchronized table may be completely excluded.

• Columns within a synchronized table may be excluded.

• Rows within a synchronized table may be excluded.

When a row in a synchronized table is excluded, this automatically causes all rows which reference the
excluded row to also be excluded. This feature of Zumero allows for easy filtering of multiple tables and
prevents foreign key constraint violations on the client.

ZSS Manager: User Guide

24

5.2.1. Filter Scopes

When choosing a filter to apply, the Zumero server takes these issues into account:

• Like permissions, filters are checked from most to least specific. Only the first matching filter is
applied. User-specific filters will take priority over group filters. Group filters will take priority
over "Any Authenticated User" and "Anyone" filters. An "Any Authenticated User" filter will
take priority over an "Anyone" filter.

• A filter exists within the scope of a DBFile. It may only filter tables that are synchronized with
that DBFile.

• You may create filters for the Anyone and Any Authenticated users.

• A user may appear in only one User filter. If a user appears in a User filter and a Group filter,
the group filter will be ignored for that user.

• Filters stand alone. It's not possible to create a filter based on another such that the result is a
combination of the two. If you have more than one filter, you may need to duplicate some settings.

5.2.2. Editing a Filter

The Edit Filter dialog contains all of the settings for a single filter. The list on the left shows all of the
tables that are synchronized in the current DBFile. If any of the table names are bold, they already have
some filter settings applied.

5.2.2.1. Excluding tables and columns

If you need to have some users sync a table or column, while other users do not sync that table or column
to their local client database, you will use filters to accomplish that.

• Excluding a table in a filter does not impact the change-tracking applied to the SQL Server host
table. If you don't want any users to sync the table, choose to Stop Syncing it instead.

• Excluding a column in a filter does not impact the change-tracking applied to the SQL Server
host table. If you don't want any users to sync the column, use the Choose Columns dialog to
stop syncing it instead.

The Excluded Columns list will show columns that are specifically excluded by this filter, as well as any
that are excluded because of settings in the Choose Columns dialog.

5.2.2.1.1. Column defaults

If you have excluded a column via a filter, or using the Choose Columns dialog, you can provide a default
value using the Edit Filter dialog. This will be the value used when inserting any rows that were initially
inserted on a client SQLite database. You may choose either the SQL Server default value, or an explicitly
specified value.

5.2.2.2. Filtering rows

A filter can reduce the number of rows synced to a client database in two ways.

• Foreign Key exclusions: All foreign keys will be enforced for a given table. For example, Table
[child] has a foreign key to Table [parent]. If a filter excludes rows from [parent], any rows in
[child] which point to excluded [parent] rows will also be excluded. You can use the Effective
Filter tab to see all of the foreign key relationships which will be enforced.

• WHERE clause inclusion: Explicitly entering a WHERE clause for a table allows you to choose
which rows are synced to the client.

ZSS Manager: User Guide

25

5.2.2.2.1. Row Inclusion WHERE Clause

5.2.2.2.1.1. ZUMERO_USER_NAME

When this query is executed by the Zumero server for a syncing client, the {{{ZUMERO_USER_NAME}}}
token is replaced by the syncing user's name. That makes it useful for Any Authenticated User or Group
filters. That also means it will not work on filters defined for the Anyone user since the syncing client
could be syncing anonymously

5.2.2.2.1.2. TIME_OF_SYNC

In addition to the {{{ZUMERO_USER_NAME}}} token mentioned in the previous example, there is also a
{{{TIME_OF_SYNC}}} token. During a sync, this token is replaced with a datetime object representing
the moment when the sync happened. It is the same as using any of the following SQL Server functions,
but allows Zumero to use much less bandwidth during sync and also eliminates race conditions that could
lead to sync failures:

• GETUTCDATE()

• GETDATE()

• CURRENT_TIMESTAMP

5.2.2.2.1.3. z$this

The alias z$this can be used in the WHERE clause to refer to the current table.

5.2.2.2.1.4. Also use WHERE clause to prevent writes

Row Inclusion WHERE clauses affect reads, meaning which rows are sent from the server to the client.
By default, they do not prevent writes — meaning, what kinds of inserts, updates, or deletes a client can
push to the server. To affect writes too, select the "Also use WHERE clause to prevent writes" check box.
In this way, you can use the WHERE clause to configure write permissions at a row-level granularity

If the "Also use WHERE clause to prevent writes" option is selected, all of the following operations are
prevented, and will cause the client to receive a "permission denied" error:

• An INSERT of a row that does not match the Row Inclusion WHERE clause.

• An UPDATE that causes a row that matches the WHERE clause to no longer match it.

• An UPDATE of a row that does not match the WHERE clause (even if it causes the row to become
a match).

• A DELETE of a row that does not match the WHERE clause.

Note that only the first two operations are even possible under normal circumstances. The last two can
only occur when there are existing clients that have already synced without the filter, and the filter is going
to be applied starting with their next sync.

5.2.2.2.2. Sample WHERE Clauses

Here are some basic scenarios that you may encounter when configuring a WHERE clause.

A static filter.

WHERE region = 'Asia'

Filter a table based on matching a column to the Zumero user performing the sync.

WHERE name = '{{{ZUMERO_USER_NAME}}}'

Join to a table based on the Zumero user performing the sync. This may be redundant if the other table is
already filtered. Check the Effective Filter tab.

ZSS Manager: User Guide

26

WHERE userid in (SELECT id FROM userstable WHERE name = '{{{ZUMERO_USER_NAME}}}')

A slightly more complicated join

WHERE regionid in (SELECT id FROM userregions WHERE userid in (SELECT id FROM

userstable WHERE name = '{{{ZUMERO_USER_NAME}}}'))

Some tables are write-only, meaning rows can be inserted on the client, but no server rows should ever
be synced to client databases. You can accomplish this by using a WHERE clause that always matches
zero rows.

WHERE 0 = 1

5.3. Constraint Violations and Conflict Resolution

When a client invokes zumero_sync(), it sends a package to the server. This package contains all changes
to the client's copy of the database which have been made since the last time that client was synchronized.

If the server's copy of the database has not been changed in the meantime by other clients, the changes
contained in the incoming package will simply be added to the database.

However, if some other client has already sent a package of changes, it is possible that there will be
conflicts. The Zumero server is responsible for automatically resolving these conflicts using a set of rules.
These rules can be customized.

There are two basic kinds of conflicts that can happen:

• Row conflicts. The incoming package is trying to update or delete a row which has already been
updated or deleted by another client. By default, row conflicts will not cause the client's sync to
be rejected.

• Constraint violation conflicts. The incoming package causes the violation of a SQL constraint
because of a change that has already been received from another client. By default, any constraint
violation conflicts will cause the client's sync to be rejected.

When a client's sync is rejected because of a row conflict or constraint violation of any kind,
zumero_sync() will return one of the following error codes.

#define name integer result code zumero_errstr() string

ZUMERO_CONSTRAINT_
VIOLATION

2760 constraint_violation

ZUMERO_UNIQUE_
CONSTRAINT_VIOLATION

3016 unique_constraint_violation

ZUMERO_CHECK_
CONSTRAINT_VIOLATION

3272 check_constraint_violation

ZUMERO_FOREIGN_KEY_
CONSTRAINT_VIOLATION

3528 foreign_key_constraint_violation

ZUMERO_SYNC_REJECT_
BY_RULE

3784 package_rejected

Any of these error codes mean that the server refused to accept the client's package because one or more
database operations contained in the package were problematic. These are the only error codes used for
this purpose.

Note
In rare occasions, Zumero app developers have observed SQLite's constraint violation error code
(19) arise during a call to sync(). Prior to ZSS version 2.0, this usually indicated that Zumero had

ZSS Manager: User Guide

27

been configured with an unsupported Row Inclusion WHERE clause. Now that Zumero supports
arbitrary WHERE clauses, a SQLite error 19 during sync usually indicates the presence of a bug
in Zumero. Contact Zumero support if such an error is ever returned by zumero_sync().

The Conflict Rules dialog can be used to adjust, on a per-table basis, how certain conflict situations are
handled. It can be opened from the context menu in the main ZSS Manager window. The various different
conflict situations and how they can be handled are detailed below.

5.3.1. Attempting to modify a deleted row.

The incoming package is trying to modify a row which has been deleted.

Example 1. A sample modify-after-delete conflict

Consider a case where the table in question has two columns: key, and name. Two clients, John and Paul
are both synced with the server, and have the latest contents.

• John deletes a row.

DELETE FROM table WHERE key = 4

• Paul modifies the same row.

UPDATE table SET name='bar' WHERE key = 4

• John syncs his change to the server. The sync is successful. The row is deleted.

• Paul syncs his change to the server. The server must use the configured rule to resolve the conflict.

The possible resolutions are:

• Accept the incoming modify operation. The row will be restored, with Paul's values key=4 and
name='bar'. This is the default action. It is sometimes referred to as an "undelete".

• Ignore the incoming modify operation. The row will remain deleted.

• Reject all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine_since_last_sync() to remove the modify
operation.

5.3.2. Attempting to delete a modified row.

The incoming package is trying to delete a row which has been modified.

Example 2. A sample delete-after-modify conflict

Consider a case where the table in question has two columns: key, and name. Two clients, John and Paul
are both synced with the server, and have the latest contents.

• John modifies a row.

UPDATE table SET name='bar' WHERE key = 4

• Paul deletes the same row.

DELETE FROM table WHERE key = 4

• John syncs his change to the server. The sync is successful. The row has the values key=4 and
name='bar'

ZSS Manager: User Guide

28

• Paul syncs his change to the server. The server must use the configured rule to resolve the conflict.

The possible resolutions are:

• Ignore the incoming delete operation. The row will remain, with the values key=4 and name='bar'.
This is the default action.

• Accept the incoming delete operation. The row will be deleted.

• Reject all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine_since_last_sync() to remove the delete
operation.

5.3.3. Attempting to modify a modified row.

The incoming package is trying to modify a row which has been modified.

Example 3. A sample modify-after-modify conflict

Consider a case where the table in question has three columns: key, name, and city. Two clients, John and
Paul are both synced with the server, and have the latest contents.

• Both John and Paul have the same contents for the row. The current values are key=4, name='foo'
and city='Liverpool'

• John modifies the row.

UPDATE table SET name='bar' WHERE key = 4

• Paul modifies the row.

UPDATE table SET city='Hamburg' WHERE key = 4

• John syncs his change to the server. The sync is successful. The row has the values key=4,
name='bar', city='Liverpool'

• Paul syncs his change to the server. The server must use the configured rule to resolve the conflict.

The possible resolutions are:

• Use the column merge rules to synthesize a new row, combining both Paul and John's changes.
Using the default column merge rules, the row will have the values key=4, name='bar' (from
John), city='Hamburg' (from Paul) This is the default action.

• Accept Paul's version of the row. The row will have the values key=4, name='foo' (unchanged),
city='Hamburg' (from Paul)

• Ignore Paul's version of the row. The row will have the values key=4, name='bar' (from John),
city='Liverpool' (unchanged)

• Reject all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine_since_last_sync() to remove the modify
operation.

5.3.3.1. Column Merge

When merging two modify operations, one of the possible actions is to merge the columns. This means
instead of resolving this conflict for the row as a whole, examine each column individually, and try to
merge the two versions of the row on a column-by-column basis.

It is possible to set the default column merge action for all columns, or to specify each column's merge
rule individually. You may not set a column merge rule on a primary key column.

ZSS Manager: User Guide

29

Example 4. Example: column merge

Consider a case where the table in question has three columns: key, name, and city. Two clients, John and
Paul are both synced with the server, and have the latest contents.

• Both John and Paul have the same contents for the row. The current values are key=4, name='foo'
and city='Liverpool'

• John modifies the row.

UPDATE table SET name='bar' WHERE key = 4

• Paul modifies the row.

UPDATE table SET city='Hamburg' WHERE key = 4

• John syncs his change to the server. The sync is successful. The row has the values key=4,
name='bar', city='Liverpool'

• Paul syncs his change to the server. The server must use the configured rule to resolve the conflict.

Each column can have a different column merge rule. Consider the following actions for the city column:

• Accept Paul's value for city. The value for the city column will be 'Hamburg'. This is the default
action.

• Ignore Paul's value for city. The value for the city column will be 'Liverpool'.

• Attempt to merge the text of Paul's value with the text of John's value. The two changes are merged
using a line-oriented 3-way merge. The technique is identical to what version control tools do
when attempting to automerge two changes to a text file.

This action is only available for text columns

When choosing a text merge operation, a fallback action will need to be provided, to handle the
case where the text merge fails. The default fallback action is to accept the incoming value.

• Reject all changes from Paul. Paul will not be able to perform any sync operations that contain
this conflict. His client must call zumero_quarantine_since_last_sync() to remove the modify
operation.

5.3.4. Attempting to delete a deleted row

For the sake of completeness, note that the situation where a sync is attempting to delete a row which has
already been deleted is not considered a conflict. If everybody wants the row to go away,it does.

The Conflict Rules dialog does not list this as a conflict situation and does not allow you to change this
behavior.

5.3.5. UNIQUE Constraint Violations

Consider a scenario involving two clients, Phil and Lew, who are sharing a database on the server.

• The database contains one synchronized table, defined as:

TABLE foo: (
 foo_id uniqueidentifier PRIMARY KEY DEFAULT NEWID(),
 a nvarchar(max),
 b int,
 UNIQUE (a,b)
);

ZSS Manager: User Guide

30

• We start the example with Phil, Lew and the server all at version 1 of the database, which contains
no rows.

• Phil does:

INSERT INTO foo (a,b) VALUES ('rose', 16);

• Lew does:

INSERT INTO foo (a,b) VALUES ('rose', 16);

• Lew does:

zumero_sync(...)

The server's database goes to version 2, with his row inserted into the foo table.

• Phil does:

zumero_sync(...)

Phil's sync will cause a violation of the unique constraint.

Currently, Zumero does not have any mechanism to allow for alternative handling of regular UNIQUE
constraint or UNIQUE index violations. (It does have provisions for handling certain PRIMARY KEY
constraint conflicts, though, as we'll see in the next section.) So whenever possible, the best way to deal
with UNIQUE constraint violations during sync is to carefully design your app to avoid them happening
in the first place. Any time you INSERT or UPDATE data in a column which has a UNIQUE constraint,
try to make sure that the data is likely to be unique.

5.3.6. PRIMARY KEY constraints

Like UNIQUE constraints, PRIMARY KEY constraints will cause a violation on sync if a client has
inserted the same value as a previous client. There are two exceptions to this behavior:

• If a table's primary key is an IDENTITY column, the Zumero server will automatically assign
the record a new IDENTITY value. If the value is referenced by FOREIGN KEY constraint from
any other records in the package, those references will be updated as well.

This is the default behavior for all tables with an IDENTITY primary key. It cannot be changed.

• If a table's primary key is not an IDENTITY column, the table can be configured to ignore the
row if it's an exact duplicate of an existing row (in other words, if all column values that the client
sent are an exact match against a single row on the server).

To enable this feature from the Conflict Resolution dialog, select "ignore the incoming row if it's
an exact duplicate" from the dropdown menu for "Sync wants to insert a row" + "Another row
with the same primary key already exists". (Note that this options is only available if the table's
primary key is not an IDENTITY column.)

5.3.7. Foreign Key Constraint Violations

5.3.7.1. Non-"Conflict" Violations

First, as an aside, note that since Zumero replicates the SQL Server data to a SQLite database on the client
side, it is possible for client apps to have foreign key constraints disabled. We recommend that apps have
foreign key constraints turned ON at all times, e.g. by using the foreign_keys pragma:

ZSS Manager: User Guide

31

PRAGMA foreign_keys = ON;

If foreign_keys are turned off, it is possible for a client to make arbitrary changes to their local database
in violation of foreign key constraints. Then when they sync, their package will be rejected due to the
constraint violations. This kind of failure is a constraint violation, but not a "conflict" in the traditional
sense (i.e. where would-be valid operations in the package are conflicting with other changes that have
already happened on the server).

5.3.7.2. Violation on INSERT

Consider a scenario involving two clients, Harold and Don, who are sharing a database on the server.

• The database contains two synchronized tables, defined as:

TABLE foo: (a nvarchar(max) PRIMARY KEY);

TABLE bar: (id uniqueidentifier PRIMARY KEY DEFAULT NEWID(), b nvarchar(max)
 REFERENCES foo (a));

• We start the example with Harold, Don and the server all at version 1 of the database, which
contains the following row:

INSERT INTO foo (a) VALUES ('hello');

• Harold does:

INSERT INTO bar (b) VALUES ('hello');

• Don does:

DELETE FROM foo;

• Don does:

zumero_sync(...)

The server's database goes to version 2, and the foo table is now empty.

• Harold does:

zumero_sync(...)

Harold's sync will cause a violation of the foreign key constraint, because the row he inserted into bar is
referencing a row in foo which no longer exists, because Don deleted it.

Harold will not be able to perform any sync operations that contain this conflict. His client must call
zumero_quarantine_since_last_sync() to remove the insert operation. This is the default behavior.

Alternatively, Zumero can be configured to ignore insert operations that violate a given foreign key
constraint. This setting can be adjusted from the Conflict Rules dialog, when looking at the table with
the outgoing foreign key constraint. It will mention the foreign key by name. By default SQL Server will
give a foreign key constraint a name with the following components, concatenating them together with
underscores in-between:

• "FK"

• the referencing table's name

ZSS Manager: User Guide

32

• the referencing column's name

• a hexadecimal number

This "ignore" setting is described in terms of an insert operation, but it has one other affect as well. Besides
insert operations, "undelete" operations will also be ignored. In other words, in the conflict situation where
the client package contains an update to a row that has already been deleted, the server will favor ignoring
the update operation over attempting to restore a row that would violate the foreign key constraint. Again,
this behavior is tied to setting for inserts, rather than having a separate configuration.

One final note about the "ignore" setting is that it does not distinguish between true "conflicts" and the
more simple and blatant violations that could arise if the client did not have foreign key constraints enabled.
All inserts that violate the constraint will simply be ignored.

5.3.7.3. Violation on DELETE

Broadly speaking, there are two ways to violate a foreign key constraint. You can attempt to insert a value
into the referencing table which is not present in the referenced table, as we saw in the previous section.
Or you can attempt to delete a value from the referenced table that is still present in the referencing table.
Let's look at this latter case next.

Consider, again, a scenario involving two clients, Harold and Don, who are sharing a database on the server.

• The database contains two synchronized tables, defined as:

TABLE foo: (a nvarchar(max) PRIMARY KEY);

TABLE bar: (id uniqueidentifier PRIMARY KEY DEFAULT NEWID(), b nvarchar(max)
 REFERENCES foo (a));

• We start the example with Harold, Don and the server all at version 1 of the database, which
contains the following row:

INSERT INTO foo (a) VALUES ('hello');

• Don does:

DELETE FROM foo;

• Harold does:

INSERT INTO bar (b) VALUES ('hello');

• Harold does:

zumero_sync(...)

The server's database goes to version 2, and the bar table now references the row in foo.

• Don does:

zumero_sync(...)

Don's sync will cause a violation of the foreign key constraint because the row he deleted from foo is being
referenced by a row in bar which was added by Harold.

Don will not be able to perform any sync operations that contain this conflict. His client must call
zumero_quarantine_since_last_sync() to remove the delete operation. This is the default behavior.

ZSS Manager: User Guide

33

While this behavior cannot be adjusted by Zumero, it can be adjusted using referential constraint actions
in SQL directly. For example, if the constraint above had specified ON DELETE CASCADE then Don's
package would have imported successfully and deleted the row in "bar" that had been added by Harold.

5.3.8. CHECK Constraint Violations

Consider a scenario involving two clients, Nancy and Ann, who are sharing a database on the server.

• The database contains one synchronized table, defined as:

TABLE foo: (
 id uniqueidentifier PRIMARY KEY DEFAULT NEWID(),
 a int,
 b int,
 c int,
 CHECK (c > (a + b))
);

And one record:

INSERT INTO items (a,b,c) VALUES (10, 20, 50);

• We start the example with Nancy, Ann and the server all at version 1 of the database.

• Nancy does:

UPDATE items SET a=25;

The row is now (25, 20, 50). Since 50 > (20 + 25), the CHECK constraint is satisfied.

• Ann does:

UPDATE items SET b=35;

The row is now (10, 35, 50). Since 50 > (10 + 35), the CHECK constraint is satisfied.

• Ann does:

zumero_sync(...)

The server's database goes to version 2.

• Nancy does:

zumero_sync(...)

Nancy's sync will cause a violation of the CHECK constraint, because column merge will result in a record
(25, 35, 50), which is a violation because 50 is not > (25 + 35).

Nancy will not be able to perform any sync operations that contain this conflict. Her client must call
zumero_quarantine_since_last_sync() to remove the update operation. This is the default behavior. It
cannot be changed.

Also, note that currently ZSS does not replicate any of the server's CHECK constraints to the client. App
developers using Zumero should have logic in place at the higher layers which will ensure the validity
of the data being inserted (though this would be true even if the CHECK constraints were replicated, to
avoid client-side SQL constraint violation errors). That being said, it is still technically possible that, like
with FOREIGN KEY constraints, a client package could encounter a CHECK constraint violation on the
server, even if there were no other "conflicting" changes involved.

ZSS Manager: User Guide

34

6. SQL Server Considerations
Zumero tries hard to tread lightly as a participant in your SQL Server infrastructure.

6.1. Create DBFile

The first time this command is run in a SQL Server database, Create DBFile creates the zumero schema.
All new objects created by ZSS Manager are created under this schema to logically separate them from
your database.

Note
Do not create tables in the zumero schema. That schema is reserved for use by ZSS; data in the
zumero schema may be dropped or modified without warning.

Each time a new DBFile is added, ZSS Manager performs these additional steps:

• Create a handful of housekeeping tables for the DBFile, some with triggers on them. These tables
keep track of transactions, data changes, schema information, merge resolution rules, and user
permissions.

• Create a stored procedure which determines the current SQL Server transaction and returns a
corresponding Zumero transaction ID.

• Create a stored procedure which marks a new set of transactions to be exported to Zumero clients.

6.2. Add Tables to DBFile

In terms of database changes, adding a table will:

• Create a view which the Zumero Server uses to query and modify the selected table when a
Zumero client syncs. Because this view is also used for changes coming from a Zumero client,
there are insert, update, and delete triggers on this view.

• Create insert, update, and delete triggers on the selected table allowing Zumero to keep track of
changes made by other applications.

• Save the table's current schema.

• Save transaction data, effectively pretending that all existing rows in the selected table were
inserted in a Zumero transaction.

6.2.1. Primary Keys

Zumero's triggers depend on a table's primary key to uniquely identify rows. A side-effect of this
requirement is that in a synchronized table, primary key values can no longer be changed. If you try,
the transaction will fail with a foreign key constraint violation from a Zumero housekeeping table which
looks like this:

The UPDATE statement conflicted with the REFERENCE constraint "fk_testzx$5975771".
The conflict occurred in database "test", table "zumero.testzx$5975771", column
 'test'.

Zumero creates an AFTER UPDATE trigger on your table. In it, Zumero needs to be able to correlate a row
from the implicit DELETED table with its counterpart in the implicit INSERTED table. Unfortunately SQL
Server provides no way to do this beyond a set of columns which uniquely identifies the row and doesn't
change. By preventing updates to primary key values, we always have this.

For this reason and others, changing primary key values in SQL Server is often cited as a bad practice. If
you have existing applications that rely on changing primary key values, you may want to change them
whether or not you use Zumero. If you must change a row's primary key values, you will need to delete
the row and add it back with the desired changes.

ZSS Manager: User Guide

35

6.2.2. Requirements

ZSS Manager will refuse to add a table unless it meets certain requirements. To be added, a table must...

• have a primary key

• not have any columns whose types are unsupported. Where possible, unsupported columns will
be excluded and not synced to the client; however, unsupported primary key columns, etc. can't
be excluded. Tables with such columns cannot be synchronized.

• not have an identity column unless it is the (one and only) primary key column

• not have a non-integer identity column

• all foreign key references must point to a table already added to the DBFile. Alternatively, you
can choose to skip the foreign key reference column.

• not use any reserved column names

• not include foreign key references to other columns in the same table, if an identity primary key
is present

• not be part of a circular foreign key reference (other than allowable references to columns in the
same table)

6.2.2.1. Unsupported Data Types

Zumero for SQL Server does not support the following SQL Server data types:

• datetimeoffset

• decimal/numeric with precision greater than 18

• image

• ntext

• sql_variant

• text

• timestamp

• xml

6.2.2.2. User Defined Types

Zumero for SQL Server supports any user-defined type that is based on a supported system type.

6.2.2.3. Reserved Column Names

The following column names are reserved for use by Zumero or SQLite:

• _rowid_

• z_del_txid

• z_gen_add

• z_gen_del

• z_rid

• z_rv

• z_txid

6.2.3. Warnings

ZSS Manager will display warnings for certain tables. These warnings don't prevent you from adding a
table but usually indicate the table has characteristics which won't be replicated to a client SQLite database.

ZSS Manager: User Guide

36

The following table characteristics will not be automatically replicated to client databases:

• Non-unique indexes

• check constraints

• filtered unique constraints

• unique constraints with ignore_dup_key enabled

• triggers (see SQL Server Triggers below as well)

• computed columns

6.2.3.1. Primary Keys

Adding a table will prevent future changes to data in that table's primary key column(s). The reasons
behind this are described above. ZSS Manager will warn for any non-IDENTITY primary key columns
(because IDENTITY columns are already immutable).

6.2.3.2. Indexes

Because they serve a data integrity purpose, all unique indexes (or constraints) will be replicated to the
client database. Non-unique indexes, however, are deliberately left behind. Indexes that are designed to
optimize performance on your server are often not the same indexes you want for a single app's use on
a mobile device. For this reason, Zumero does not automatically replicate them. You should add to the
client database only the indexes that are appropriate to your mobile app.

6.2.3.3. Decimal, Numeric, Money and Smallmoney types

The exact SQL Server floating point types also yield a warning. Because SQLite has no exact floating
point type, these values are multiplied by 10^scale and stored as integers in the client database. Money
and smallmoney always have scale 4 and are multiplied by 10^4 or 10,000. For example, a SQL Server
smallmoney value of 12.34 is saved as 123400 in the client database. In a client app, you should multiply
or divide the integer by the defined scale when saving or retrieving the value, respectively.

Note

Zumero does not support decimal or numeric columns with precision greater than 18. 64-bit
integers are used in the client SQLite database, and precisions greater than 18 will overflow them.

6.2.3.4. Default Values

ZSS supports some SQL Server default value definitions. Most literals and the GETUTCDATE function
are supported and will be automatically included in the client database. A warning will appear for any
unsupported defaults. Unsupported defaults are not included in the client database.

6.2.3.5. Small Identity Columns

ZSS Manager will warn you about any IDENTITY columns smaller than 32-bits. Identity values created on
the client can be considered temporary: when syncing, the server will insert "official" values and replicate
the changes back to the client. For this reason, the client can't know if it is overflowing an identity column.
Only the server knows for sure. If you were to make a tinyint column an IDENTITY(1,1), you'd only
get 255 rows before an overflow. ZSS Manager warns you to help prevent this scenario.

6.2.3.6. Non-Unicode Text Columns

The client SQLite database has only Unicode text storage. All text in the client database is UTF-8 encoded
and no attempt is made to exclude non-ASCII text. For this reason, ZSS Manager will warn about char

ZSS Manager: User Guide

37

and varchar fields, which do not support Unicode. You should take care in your client to write only
ASCII data in these fields. Non-ASCII data may be mangled when synced to the server.

6.2.3.7. MAX columns

ZSS Manager will warn about the lengths of any varchar(max), nvarchar(max), or varbinary(max)
columns. In SQL Server, the maximum length for these columns is 2 gigabytes. In the client SQLite
database the maximum length is 1 billion bytes, which is a bit less than a gigabyte. (This is unlikely to affect
a mobile app. You don't want to transfer multi-gigabyte fields over mobile networks for reasons that have
nothing to do with Zumero: mobile networks aren't that fast and mobile device storage isn't that plentiful.)

6.2.3.8. Unchecked foreign keys

ZSS Manager will warn about unchecked foreign keys. In SQL Server, it is possible (usually via ALTER
TABLE... WITH NOCHECK) to have a foreign key relationship where the values are not actually checked
against the foreign tables. This can lead to foreign key constraint failures on the client side when non-
matching rows are included in the synced data.

6.2.3.9. Columns named "rowid" or "oid"

The column names "rowid" and "oid" can have special meaning in SQLite5. If a table has a column
named "rowid" or "oid" (or one of its variants - "RowID", "OID", etc.) Zumero will create and synchronize
this column correctly in the client database, however some third-party ORMs or libraries might not work
correctly with it. For this reason, ZSS Manager will issue a warning for such a column.

6.2.4. SQL Server Schemas

ZSS supports SQL Server schemas. Any table belonging to a schema other than dbo will appear in the
client database prefixed by the schema name and an underscore:

SQL Server Table Client Database Table

dbo.Categories Categories

sales.Categories sales_Categories

region.Categories region_Categories

Note

You must not create tables in the zumero schema. That schema is reserved for use by ZSS; data
in the zumero schema may be dropped or modified without warning.

6.3. Stop Syncing a Table

If you need to stop syncing a table, you select the table in the ZSS Manager window and pick the "Stop
Syncing" entry from the context menu. It should be noted, however, that this is destructive and shouldn't
be done on live applications with Zumero clients. Your data is left alone, but all Zumero housekeeping
data is deleted and the housekeeping tables are dropped.

Clients will drop their corresponding table on the next sync. This behavior has noteworthy consequences:

• Any unsynced changes to the table in client databases are lost.

• The previous statement is true even if the table is re-added before a client has synced and
dropped the table. All Zumero housekeeping data is deleted, so clients must still drop and
recreate the table.

5 http://www.sqlite.org/lang_createtable.html#rowid

http://www.sqlite.org/lang_createtable.html#rowid

ZSS Manager: User Guide

38

6.4. Delete DBFile

Deleting a DBFile should be considered destructive. It is tremendously useful during development, but
should be avoided in production. Deleting a DBFile won't delete your data from the server database, but it
will invalidate any client databases that have synced against it. Even if you replace a deleted DBFile with
another of the same name, corresponding client databases need to be deleted and re-synced. Also note that
any user permissions associated with the DBFile will be permanently deleted.

6.5. Permissions

The Zumero Server needs the same read/write permissions that you have configured for other applications
that use the data. You should give it access to only the data you expect your Zumero clients to modify.

VIEW SERVER STATE

Zumero requires that the VIEW SERVER STATE permission is granted for both the Zumero Server and for
any other applications that will modify synchronized tables. This allows Zumero to correlate SQL Server
transaction IDs with Zumero transaction IDs.

Zumero installs triggers that call sys.dm_tran_current_transaction to retrieve the ID of the
current SQL Server transaction. Because these triggers will be fired by anyone who changes data in a
synchronized table, it's important that you grant this permission for all users and groups who will alter
data in synchronized tables.

IDENTITY_INSERT

If any synchronized table has an IDENTITY column for its primary key, the Zumero Server will issue SET
IDENTITY_INSERT commands on that table in a few special situations, detailed below. The permissions
required to perform SET IDENTITY_INSERT state that the user "must own the table or have ALTER
permission on the table."

The first situation where SET IDENTITY_INSERT is used is as follows. Two clients are both in sync.
One client deletes a row (in a table with an IDENTITY primary key) and syncs. The other client modifies
the same row and syncs. In this situation, the Zumero Server's default behaviour is to "restore the row
with the new contents" (though this can be changed from within the Conflict Rules dialogue). When the
Zumero Server restores the row, it will use SET IDENTITY_INSERT in order to restore it with the same
IDENTITY value that it had before.

The other situation where SET IDENTITY_INSERT may be used can arise on a table that has both an
IDENTITY primary key and a foreign key constraint on a NOT NULL column. If a client deletes a row in
the parent table but does not delete its children in the aforementioned child table (instead having assigned
them a new parent) and then syncs, when the Zumero Server imports this change it will DELETE the child
row(s) and re-INSERT them with the new parent. Once again, it uses SET IDENTITY_INSERT in order
to retain the original IDENTITY value(s).

6.6. SQL Server Triggers

As noted in the Warnings section, ZSS will not replicate SQL Server triggers to SQLite on the client
devices. Furthermore, some care must be taken to ensure that triggers on synced tables will be compatible
with Zumero.

6.6.1. Trigger Order

When adding a table to the DBFile, ZSS Manager calls sp_settriggerorder to set Zumero's update
trigger as "First". If this step fails, the table will still be added, but a warning is issued: “Unable to set the
Zumero trigger as First. If any update trigger on this table changes the table before the Zumero trigger

http://technet.microsoft.com/en-us/library/ms186327.aspx

ZSS Manager: User Guide

39

runs, serious data corruption may occur. Check your trigger order, and make sure that any update triggers
that change the data in the table are run after the Zumero trigger.”

The data corruption in the table arises when there is an update trigger on the table that performs another
update operation within the table (for example, to keep a timestamp column up-to-date). If you do not
have any update triggers on the table that update the table (and know that you never will) this warning
can be ignored.

If, on the other hand, you have any update triggers that update the table, these triggers must be set to
execute after Zumero's trigger. If a non-Zumero update trigger executes before Zumero's update trigger
and then performs an update within the table, Zumero will store the wrong versions the updated rows in
its record of the table's history. This corrupt historical data could then be used when performing conflict
resolution (e.g. in a Column Merge), which then produces corrupt data in the live table in surprising ways.

6.6.2. Trigger Output

Triggers that issue counts or PRINT statements have been known to interfere with the Zumero server's
connection to the database.

Make sure that a SET NOCOUNT ON statement is executed at the beginning of each trigger, and remove
any PRINT statements.

6.6.3. Incompatible Triggers

Some triggers that change the effect of the executed SQL may prove to be incompatible with Zumero. In
particular, watch out for following situations:

• INSTEAD OF INSERT triggers must insert the same number of rows as the original INSERT,
and the rows must have the same primary key values as were originally being inserted.

• AFTER INSERT triggers must not delete any of the inserted rows.

• INSTEAD OF UPDATE triggers must update the exact same set of rows as the original UPDATE.

• INSTEAD OF DELETE triggers must delete the exact same set of rows as the original DELETE.

6.7. Database Schema Changes

Once a table has been added to a Zumero DBFile, most schema changes will be detected automatically,
and propagated to the client on the next sync.

Tables may be renamed; columns may be added, dropped or renamed; foreign keys may be added, dropped
and modified; constraints and data types may be changed, etc.

6.7.1. Deployment Tips

As is the case for any database-backed app, schema changes are a pain. Generally speaking, you have to
deploy the new schema and the app changes to support them simultaneously. ZSS has no silver bullet for
this issue, but we've attempted to make schema changes in Zumero-enabled databases no more difficult
than they already were. When you change the schema of a synchronized table, clients pull down the new
schema on their next sync. So your client app needs to be capable of dealing with the new schema before
it's applied to the production database. For a simple change, you'd do something like this:

• Make your schema changes in your development database.

• Update your app to handle the new schema using the development database. You have several
options here. The best choice depends on the scope of the schema changes and your app
deployment scenario:

• Make the app capable of dealing with both the old and the new schema. Deploy the app
first, then run the schema change scripts in production.

ZSS Manager: User Guide

40

• Make the app capable of dealing with only the new schema. Deploy the app and
the schema changes "simultaneously," where the definition of simultaneous fits your
deployment scenario.

• Add schema versions to your database (e.g. simply a table with a schema version number
that you create) so the app can make more sophisticated decisions based on the schema
it sees.

6.7.2. Renaming a Table

The standard sp_rename procedure cannot be used to rename synchronized tables. If attempted,
SQL will issue an error message stating "Object '[dbo].[foo]' cannot be renamed because the object
participates in enforced dependencies." To work around this limitation, Zumero provides a stored
procedure zumero.RenamePreparedTable which can be used to do the rename. For example, to rename
table [foo] to [bar] in the [dbo] schema, issue the command:

EXEC [zumero].[RenamePreparedTable] 'dbo', 'foo', 'bar';

6.7.3. Adding a Column

When you add a new column to a table, Zumero will not add that column to client devices unless you
explicitly tell it to start syncing the column. This can be done from ZSS Manager's "Choose Columns..."
dialog for that table. You can also tell Zumero to start syncing a column by calling a Zumero-provided
SQL stored procedure. This could be called directly from within the same SQL script being used to add
the column. For example:

BEGIN TRANSACTION;
 ALTER TABLE [dbo].[foo] ADD [c] int;
 EXEC [zumero].[StartSyncingColumn] 'dbo', 'foo', 'c';
 COMMIT TRANSACTION;

Similarly, Zumero provides a StopSyncingColumn stored procedure which allows you stop syncing
a certain column without removing it from the server database. When this is used, the column will be
removed from all client devices, and Zumero's history and housekeeping data for that column will be
removed from the server as well.

6.7.4. Warnings

Many schema change operations will cause Zumero to drop and re-create its triggers on the host table.
When this happens (as when first adding the table to the dbfile) sp_settriggerorder is used to set
Zumero's update trigger as "First". If sp_settriggerorder fails, a warning is issued saying “Zumero
Warning: Unable to set trigger as First. If any update trigger on this table changes the table before the
Zumero trigger runs, serious data corruption may occur. Check your trigger order, and make sure that
any update triggers that change the data in the table are run after the Zumero trigger.”

This warning message is referring to the fact that an update trigger that performs updates within the table
will cause data corruption if it executes before Zumero's trigger. This is described in more detail in the
Trigger Order section.

Additionally, certain other warnings may be issued similar to the warnings when adding the table, in
particular when altering a column of a data type that may require special handling by Zumero clients.

6.7.5. Problematic Schema Changes

In a synchronized table, the references and triggers created by Zumero will prevent certain schema changes
from succeeding, including:

ZSS Manager: User Guide

41

• Altering or dropping the primary key column.

• Removing the table's primary key constraint.

• Dropping the synchronized table. (In order to drop a synchronized table, you must first use ZSS
Manager to stop syncing the table.)

There are other changes which Zumero does not prevent from happening, but which put the database
into a state that Zumero does not support. When this happens, all Zumero clients will receive a
"server_misconfiguration" error every time they try to sync with the affected DBFile. Schema changes
in this category include:

• Changing the type of a Zumero-synchronized column to one of the unsupported types.

• Creating a circular foreign key dependency between synchronized tables. (For example, Table-A
has a foreign key reference into Table-B and Table-B has a foreign key reference into Table-A.)

• Adding a same-table reference constraint in a synchronized table whose primary key is an identity
column.

Finally, certain other schema changes are supported, but can cause trouble if you're not careful. These
include the following.

• If you drop or rename a column that is referenced by a filter's Row Exclusion WHERE Clause,
the users specified for that filter will be unable to sync until the WHERE clause is updated. They
will receive an "http_500" error (Internal Server Error).

• It is possible to add a foreign key constraint on a syncing column which references a column
that is not synced. When this is the case, the client has no way to enforce the constraint and will
receive a "foreign_key_constraint_violation" error on sync if it has inserted an invalid value.

• If you add a NOT NULL column that does not have a default value, clients will not be able to
push inserts into the table until you have either started syncing the column with Zumero or else
given it a default value.

• When changing a column's default value, it is important to note that while most default values that
are simple expressions will be synced to the client, some default values will not. ZSS Manager's
Errors and Warnings dialog will show warnings about default values that won't sync, but when
altering them using SQL no warning will be issued.

Most of these issues will be listed on the Errors and Warnings dialog.

6.8. Data Type Conversion and Limitations

In order to maintain compatibility between the SQL Server and mobile (SQLite) copies of your data,
certain column types involve type conversions and/or content limitations to ensure that:

• SQL Server rows will arrive intact on the mobile side

• SQLite rows will arrive intact in SQL Server

• Data will "round trip" properly between the two ends

• Equivalent column values added on both ends will be equal to each other

SQL Server Type SQLite
Type

Conversions Restrictions

CHAR, NCHAR text Values added from
SQLite will be padded
to the full column width

ZSS Manager: User Guide

42

SQL Server Type SQLite
Type

Conversions Restrictions

(with the exception
of NULL values).
SQL Server will
automatically pad
strings to match the
fixed column width,
so Zumero mimics this
behavior on the mobile
side.

This applies to fixed-
width fields only;
VARCHAR and NVARCHAR
will not be automatically
padded.

MONEY, SMALLMONEY int SQL Server stores
money values as
ten-thousandths of a
monetary unit. The
mobile data will reflect
that ten-thousandth
value, not the whole.

For example, assuming
dollars as the monetary
unit, adding $2.75 on
the SQL Server side
would result in a column
containing 27,500 in the
mobile database.

Similarly, adding
10,000 in SQLite
would result in $1.00
being stored in SQL
Server.

DECIMAL, NUMERIC int DECIMAL and NUMERIC
types are converted to
integers when saved in
SQLite by multiplying
by 10^scale. The
integers are divided
by the 10^scale for
conversion back to SQL
Server.

For example suppose we
have a DECIMAL(10,5)
column (5 is the scale.)
A value of 12.34 in SQL
Server would be stored
as 1,234,000 in SQLite.

Zumero does not support decimal
or numeric columns with precision
greater than 18. 64-bit integers are
used in the client SQLite database,
and precisions greater than 18 will
overflow them.

ZSS Manager: User Guide

43

SQL Server Type SQLite
Type

Conversions Restrictions

DATE text In order for date values to be
interpreted identically on both the
SQL Server and SQLite sides, when
adding dates to mobile databases,
you must use YYYY-MM-DD format.
All other (non-NULL) values will be
rejected at INSERT/UPDATE time.

TIME text In order for time values to be
interpreted identically on both the
SQL Server and SQLite sides, when
adding times to mobile databases, you
must use one of the following time
formats:

• Whole seconds: HH:MM:SS

• Fractional seconds,
from 3 to 7 digits:
HH:MM:SS.sss[s{1,4}]

All other (non-NULL) values will be
rejected at INSERT/UPDATE time.

DATETIME text In order for datetime values to be
interpreted identically on both the
SQL Server and SQLite sides, when
adding times to mobile databases,
you must use one of the following
formats:

• Minutes only: YYYY-MM-
DD HH:MM or YYYY-MM-
DDTHH:MM

• Whole seconds: YYYY-MM-
DD HH:MM:SS or YYYY-MM-
DDTHH:MM:SS

• Fractional seconds, from 3
to 7 digits: HYYYY-MM-DD
H:MM:SS.sss[s{1,4}]or
HYYYY-MM-

DDTH:MM:SS.sss[s{1,4}]

Note

In all cases, the "T" is a
literal letter "T", which may
be used interchangeably
with " " as the date/time
separator. For example,
12:55pm on January 10,
1982 may be represented as

ZSS Manager: User Guide

44

SQL Server Type SQLite
Type

Conversions Restrictions

either 1982-01-10 12:55
or 1982-01-10T12:55.

All other (non-NULL) values will be
rejected at INSERT/UPDATE time.

UNIQUEIDENTIFIER blob The
uniqueidentifier

type is stored as a 16-
byte blob in SQLite
(matching the 16-byte
value stored on SQL
Server).

GEOMETRY,

GEOGRAPHY,

HIERARCHYID

blob These .net object
types will be stored
in their default binary
representation.
Interpretation of these
values is up to the client
application.

Do not insert arbitrary binary data, or
modify synced data, unless you are
absolutely certain you know what
you are doing. Data which cannot be
properly deserialized will cause sync
operations to fail.

If columns of these types aren't
strictly needed on the client, it is
safest to exclude those columns from
sync.

6.8.1. Working with uniqueidentifier Columns in Client Databases

A uniqueidentifier column is stored in the client SQLite database as 16-byte binary values, just like
in SQL Server.

You can use SQLite's randomblob function to create new uniqueidentifier values:

insert into my_table (my_guid_col, my_text_col) values (randomblob(16), 'my data');

However, SQL Server developers are accustomed to seeing uniqueidentifier values (GUIDs) in their
standard textual representation. For example: EA296149-4E9A-4DB7-9944-F3459931140C. For the
purposes of display and literal values with the uniqueidentifier data type, SQL Server automatically
converts to/from this textual representation.

But SQLite does not have built-in support for this textual representation of a 16-byte blob. If you ask
SQLite to SELECT the value of 16-byte blob, you will get 16 binary bytes. It will not automatically convert
to the textual representation typically used to display a GUID.

SQLite does have a hex function which can be used to get a textual representation in hexadecimal:

select hex(my_guid_col) from my_table;

However, this will result in a textual representation which is different:
496129EA9A4EB74D9944F3459931140C. The dashes are missing. And the byte order is different as
well.

Microsoft's GUID format uses little endian byte order for the first three fields of the GUID6. In the first
three fields, the order of hexadecimal pairs is reversed as follows:

6 http://en.wikipedia.org/wiki/Globally_unique_identifier

http://en.wikipedia.org/wiki/Globally_unique_identifier

ZSS Manager: User Guide

45

SQL Server GUID Raw Hex

AABBCCDD-EEFF-GGHH-IIJJ-KKLLMMNNOOPP DDCCBBAAFFEEHHGGIIJJKKLLMMNNOOPP

EA296149-4E9A-4DB7-9944-F3459931140C 496129EA9A4EB74D9944F3459931140C

The differing textual representations also come into play when using a uniqueidentifier value as a literal.
If you try to do this the normal SQL Server way:

insert into my_table (my_guid_col) values ('EA296149-4E9A-4DB7-9944-F3459931140C');

... you will get an error. For SQLite, the GUID value shown is a string literal, not a GUID value, and
SQLite will not automatically convert to a 16-byte blob.

Use SQLite's binary literal syntax to specify a uniqueidentifier value:

select my_text_col from my_table
where my_guid_col = x'496129EA9A4EB74D9944F3459931140C';

insert into my_table (my_guid_col, my_text_col)
values (x'496129EA9A4EB74D9944F3459931140C', 'my data');

update my_table set my_text_col='test123'
where my_guid_col = x'496129EA9A4EB74D9944F3459931140C';

7. Advanced Topics

7.1. Multiple Database Configurations

In the simplest configuration, ZSS server will point to a single database containing both its configuration
data and your application data.

The database specified during ZSS configuration will be your application's data store. Your Zumero log
files, users, and configuration and housekeeping data will be stored here.

ZSS Manager: User Guide

46

Another possible configuration is multiple ZSS server instances, each pointing at its own database.

This would be configured through the ZSS Server Configuration tool.

Each instance runs on a separate port, and behaves just as the simple version above: one server instance,
one database, all your data and Zumero's data in the same place.

If your application's data spans multiple databases, or if you simply wish to keep Zumero's configuration
separate from the application data, you may choose to use a multiple database configuration.

In this case you will again configure ZSS Server to point at a single database. This database may or may
not contain application data as well. It will contain Zumero configuration data, including pointers to the
databases and tables where your data is stored.

This database is referred to as the Primary ZSS database. ZSS Server is always connected to this database.
ZSS manager will also always be connected to this database.

Both ZSS Server and ZSS manager may also connect to other databases where your application data are
stored. These data may exist solely in one or more other databases, or some may exist in the primary
database as well.

In all cases, when referring to the databases storing your application's data, we refer to these as Secondary
databases. They contain application data, Zumero historical information, and optional user information;
but they do not contain Zumero configuration or logs (unless also acting as a Primary).

ZSS Manager: User Guide

47

Above we see a sample database structure consisting of a single primary database with configuration
data only, and a single secondary database containing application data. Note that the ZSS server has been
configured to connect to the primary database; it finds the secondary databases via the Primary.

Secondary databases may reside on the same SQL Server as the Primary database, on another SQL Server,
or both.

In this more-complex scenario we have a primary database which also includes application data. This
may have started as a simple, single-database ZSS installation. An additional secondary database has been
added.

Note that when creating a DBFile, or adding tables to that DBFile, we will always be working with a single
secondary connection. DBFiles cannot span databases.

Let's look at how this configuration would behave in ZSS Manager.

Here, we are connecting ZSS manager to our primary database -- the same database configured for ZSS
Server. At the moment, we're also connected to that same database as our Secondary connection.

Looking at the list of available DBFiles, we see that some of them are "remote" -- they live in a secondary
database ("otherdb") to which we're not connected at the moment.

When we select one of these DBFiles, ZSS Manager's Secondary connection is changed automatically to
the database housing that DBFile's data.

The DBFile list now shows this DBFile as "local", and our previous DBFile as remote.

ZSS Manager: User Guide

48

The status bar shows which server(s) and database(s) you are currently connected to. The primary
connection is listed first, and secondary (if any) is listed second:

7.2. Migrating ZSS Configuration between Servers

7.2.1. What is Migration?

For most projects, you'll have (at least) a development Zumero server and a production server.
You'll test things out, create and change DBFiles, tweak filters, find just the right back-end schema,
etc. in the development environment. At some point, though, you need to move that setup into
production — preferably without having to go through all of the Zumero configuration steps again. ZSS
Migration handles that.

7.2.2. What does Migration do?

ZSS can migrate, on a DBFile-at-a-time basis:

• The definition of the DBFile itself

• The tables synchronized with that DBFile

• Row and column merge conflict rules defined for that DBFile

• Column and table exclusions

• Where-clause filters

• Users defined in zumero.users

• Permissions associated with migrated users

• Permissions associated with "Anyone" or "Any Authenticated Users"

• "table2" authorization dependencies on other DBFiles

7.2.3. What doesn't Migration do?

ZSS Migration (like ZSS in general) doesn't create or alter your underlying data. In particular, Migration
will not:

• Create your tables

• Add columns missing from the destination tables

• Change data types to match the source tables

• Start Synchronizing tables that are missing columns synced in the source DBFile

• Migrate or create user tables other than zumero.users

7.2.4. Using ZSS Migration

Select the DBFile that you wish to migrate. From the menubar, choose DBFile -> Migrate DBFile

ZSS Manager: User Guide

49

In this example, we're migrating the demo DBFile in the demo database on may

To begin, select Migrate the current DBFile... from the DBFile menu.

Our first step is to select the destination database for the migrated DBFile. This would be the primary
database, e.g. the one that your production ZSS Server is configured to use.

ZSS Manager: User Guide

50

We've chosen the otherdb database.

Next, we need to select the database where your data lives in the destination environment (i.e. the secondary
database)

We have an all-in-one setup here, but you could choose any supported multi-database configuration.

By default, if a zumero.users table is found alongside your data tables, ZSS Manager will migrate those
users to the matching zumero.users table at the destination. You can choose not to do this if, for example,
you're moving from a development environment full of dummy users into a production environment where
things need to be more locked-down.

If you choose to migrate these users, you can either:

• Migrate the passwords along with the usernames, thus allowing the same login credentials in both
environments. Or...

ZSS Manager: User Guide

51

• Use scrambled passwords in the new environment. In this case, you'll need to explicitly change
the passwords on any migrated users that will actually be authenticating and syncing.

Randomized passwords spare you from re-creating your users (and their associated permissions) without
compromising security. Only those users you specifically edit will be allowed to actually do anything.

Here, we're migrating users for convenience, but scrambling their passwords for safety.

We're almost ready to migrate our configuration, but first we need to be sure we can migrate safely. To do
so, click Check for Issues. If any errors are found (missing columns, etc.) migration won't proceed until
they are corrected.

No problems here. We're ready to go.

We click Migrate, and see a series of status messages as the migration proceeds.

ZSS Manager: User Guide

52

This migration completed successfully.

If we connect to the otherdb database and load the demo DBFile, we see the same synchronized table...

Including a column exclusion carried over from the source...

ZSS Manager: User Guide

53

Users, filters and permissions are all in place, as well.

7.3. Audit Trails

Whenever Zumero uses rules to resolve a conflict, it alters data. For diagnostic purposes, it preserves an
audit trail of all such changes. This information can be used to verify that your conflict resolution rules
are behaving in the manner you expect.

ZSS Manager: User Guide

54

The audit trail is stored in the zumero.audit table, located in the same database as the DBFile being
synced.

Each row of the audit table contains the object_id of the host table plus four versions of the conflicting
row, each one serialized as JSON.

Column Description

tbl the object_id of the host table

ancestor the row as it appeared before the conflict happened

already the row modified by the first client

incoming the row as modified by the second client

result the row with its conflict resolved

The audit trail table is designed only for the purpose of having a place for the Zumero server to keep a
chronicle of any changes it makes during conflict resolution. It will INSERT rows, but it does not UPDATE
or DELETE. You should not INSERT or UPDATE anything in zumero.audit. You may, however,
DELETE rows if you want to save space.

7.4. The Server Log

The Zumero server logs all client requests into the zumero.log table, located in the primary ZSS Server
database.

Column Description

url The URL requested by the client.

ip_address The IP address of the client making the request

unix_time The time of the request as unix time a

request_size The size of the package being pushed from the client, in bytes

response_size The size of the response package being sent back down to the client,
in bytes

status The HTTP status code of the response

• 200 -- successful request, response package sent back to the
client

• 204 -- successful request, no response package sent back

• 304 -- /pull, but nothing new to send back

• 401 -- authentication failed

• 403 -- permission denied

• 406 -- database constraint violation

elapsed The amount of time necessary to process the request, in milliseconds
a http://en.wikipedia.org/wiki/Unix_time

7.5. Upgrading ZSS

The recommended order in which to upgrade ZSS is:

1. Upgrade ZSS Manager

http://en.wikipedia.org/wiki/Unix_time

ZSS Manager: User Guide

55

2. Connect to your SQL Server database with ZSS Manager, and follow the upgrade prompts (see
below). If you have multiple primary databases, you may want to examine them all for upgrades.

3. Upgrade your ZSS Server.

4. Replace the client libraries that you're using. Rebuild your app and redeploy. When the client
does the first sync, it should upgrade the client database.

Older clients will sync with a newer server, but the reverse is not true.

When you first connect your upgraded ZSS Manager to a database that was previously used with ZSS,
you'll may see the Upgrade DBFiles dialog:

Clicking Upgrade will begin a table-by-table upgrade process, as ZSS Manager updates each table's
triggers and housekeeping data. Once this process is complete, the tables are ready for use with your
upgraded ZSS Server.

7.6. Editing DBFile Connection Strings

To edit a DBFile's connection information, select DBFile Connection Strings... from the DBFiles menu.

You'll see a list of DBFiles and their connection information. DBFiles in the same database as the ZSS
Primary connection will usually have empty connection details; this is as expected.

Double-click a list item to edit it. There are two variations of connection details.

ZSS Manager: User Guide

56

7.6.1. Use the Primary Database Connection

This is for DBFiles that live on the same database server as the Primary ZSS database. In these cases, you
only need to edit the name of the database. ZSS Server will connect using the primary connection string,
then switch to the Secondary database.

7.6.2. Custom Connection Details

This is for DBFiles that live on a different database server than the Primary ZSS database, or any DBFile
for which you need to use different credentials. Here you'll build a full ODBC connection string.

You can use the Test button to try connecting using the connection string before clicking OK to save it.
Be aware that, depending on your system configuration, the connection string needed by the ZSS Server
may not work from the system on which ZSS Manager is running.

ZSS Manager will still allow you to save the connect information without testing, or when the test fails.

ZSS Manager: User Guide

57

7.7. Recovering from a Database Rollback

If your Zumero-enabled SQL Server database is ever rolled back to a previous state (e.g. by being restored
from a backup), then it is possible that some of the Zumero clients will have changes that used to be on
the server but have been rolled back. Furthermore, such clients may have made additional changes which
were never pushed to the server.

When a call to zumero_sync() on a client device detects that the server was rolled back to a point in
time before the client's baseline, it will send a "recovery package" to the server. By default, the server will
reject the recovery package and the sync will fail with a server_rollback_detected error. Obviously,
this situation is not ideal since the client will never be able to synchronize that local copy of the database
again. Their only option would be to start a brand new client database and sync from scratch. ZSS Manager
can be used to change this behavior so that the client's sync can succeed, and possibly even restore lost
changes back into the server database's host tables. The settings that affect how the server and client behave
after a server rollback can be accessed in ZSS Manager using the "DBFile" menu's "Database Rollback
Recovery..." item.

A successful import of a recovery package will apply all rolled back INSERT, UPDATE, and DELETE
operations that the client knew about in all tables in the DBFile. All of the recovery operations are applied
within a single transaction and committed as an atomic operation. If that commit succeeds and the client
also had additional never-pushed changes, those changes will be attempted in a second transaction.

Note

When recovering INSERT operations in a table with an IDENTITY primary key, the identity
values of the inserted rows may be different than they were before the rollback.

7.7.1. Permissions

The first setting in the Rollback Recovery dialog is a permissions setting. In order for the server to import
a recovery package from a client, authenticated users must be granted permission to recover the rolled
back changes.

Note

Because the permissions setting in the "Rollback Recovery" dialog allows the client to modify
the host tables, it is best to revert the setting (and thus deny the permission) after all rolled back
changes have been recovered.

Note, though, that even if the client has permission to perform data recovery, the recovery could still fail.
This is because the client might only have a filtered view of the rolled back changes, and because there
might have been new changes to the database after the rollback. Thus recovery could fail due to a constraint
violation or a conflict rule setting.

7.7.2. Client Sync Retry Rule

The second setting in the Rollback Recovery dialog controls what will happen whenever a
recovery package is rejected or fails to import for any reason. By default, the server will send a
server_rollback_detected error to the client, and report details about why their particular recovery
package failed in the Event Viewer entry for the failed sync request. This allows the clients to preserve
their local changes and retry again later.

Ideally, after you have given users permission to recover changes, then all clients will have a successful
sync after all the changes have been recovered. Unfortunately, there are cases where, due to conflicts or
missing changes, some clients are not able to recover. When this happens, you can adjust the client sync

ZSS Manager: User Guide

58

retry rule to "abandon changes on the client device and re-sync from the restore point." This will allow
their syncs to succeed, and they will no longer be stuck getting an error.

It is recommended that when using this option, users are still given permission to recover rolled-back
changes to Zumero. Without this permission, there will be no record of what changes on the client
were rolled back. If, on the other hand, the user has permission to report rolled-back changes, then raw
information from their failed recovery package will be left in the DBFile's r$dump and r$dump_rows
tables. These rows contain JSON-serialized data from the client. Columns requiring conversion will be in
their client-side SQLite format. Data in the r$dump and r$dump_rows tables is never used by Zumero
itself, and can be deleted at any time.

7.7.3. Extra Client Data Cap

There is one more setting worth mentioning related to recovering from a database rollback. In order to
recover from a rollback, the client needs to store a (usually) small amount of extra data in the client-side
database. By default, the client will cap this extra data at "two month's worth of data" (actually sixty-five
days). In other words, clients will be able to recover if the database is rolled back to a restore point up to
sixty-five days in the past. If the server is rolled back to a point earlier than this "cap", clients will not be
able to recover any data, and will not be able to get out of the "server_rollback_detected" error state.

There is no way to modify this cap from ZSS Manager, however administrators wanting to modify it may
do so by inserting (or modifying) the rule directly in the database. The rule is stored in the t$rules table.
Its "situation" number is one, and the "action" represents the number of days clients will store.

For example, an administrator desiring to be "safer" and have clients store 100 days worth of data for the
DBFile named "my_dbfile" would issue the command:

INSERT INTO zumero.my_dbfiletrules (sit, act) VALUES (1, 100);

On the other hand, an administrator who is confident that 20 days is enough, and wants to save a little bit
of bandwidth and client storage space would issue the command:

INSERT INTO zumero.my_dbfiletrules (sit, act) VALUES ('my_dbfile', 1, 20);

Finally, an administrator who does not want clients to be able to recover from a rollback and wants to use
the minimum amount of bandwidth and storage could effectively turn off the feature by issuing:

INSERT INTO zumero.rules_dbfile (dbfile, sit, act) VALUES ('my_dbfile', 1, -1);

7.8. Azure Active Directory Authentication

ZSS Manager can connect to Azure SQL using Azure active directory credentials through three different
authentication methods:

• Azure Active Directory - Password

• Azure Active Directory - Integrated

• Azure Active Directory - Universal with MFA support

7.8.1. Azure Configuration

Azure Active Directory, Azure AD Domain Services, and Azure SQL must all be properly configured
to use this authentication method. Additionally if "Azure Active Directory - Integrated" is the desired
authentication method then the machine running ZSS Manager must be joined to your Azure Active
Directory domain.

ZSS Manager: User Guide

59

The configuration of these services is outside of the scope of this documentation, but more information on
their configuration can be found in the Microsoft documentation.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-aad-authentication-configure

Once those services are configured and connecting using your preferred Azure AD authentication method
via SQL Server Management studio has been tested, there is still one more aspect of Azure AD that must
be configured to allow ZSS Manager to connect to your database. An App Registration must be created
in Azure AD for ZSS Manager

1. Login to your Azure portal

2. Select Azure Active Directory from the list of services

3. Select App Registrations from the list on the left hand side

4. Select New Registration from the menu

5. Give the registration a name (e.g. ZSS Manager), Select the account types you wish this
registration to be valid for, and click Register. (Note: The redirect URL parameter can be left
blank.)

6. On the resulting App Registration page, make a note of the Application (client) ID. This will be
needed when configuring ZSS Manager.

7. On the same page, select View API Permissions

8. Select Add a permission

9. Choose Azure SQL Database, Then selecte Delegated Permission, and check the box for Allow
User Impersonation

10.Next, back on the App Registration page click Redirect URIs.

11.Select Add a Platform, then choose Mobile and desktop applications

12.Check the box for the MASL URI, ensure Treat application as a public client is set to Yes, then
save the URI.

7.8.1.1. Configure ZSS Manager for Azure

When authenticating with Azure AD, ZSS Manager needs to know the Client ID of the App Registration
that was created in the previous section. ZSS Manager has the ability to keep track of multiple Client IDs
in case your organization had multiple Azure Active Directory Domains.

When first selecting one of the Azure AD Authentication methods you will be prompted to configure your
Azure Client IDs. Take the following steps:

1. Click Yes when prompted to configure Azure Client IDs.

2. On the resulting dialog box click the Add button.

3. Enter the Client ID and a name to identify this Client ID, then click the Add button to save this
Client ID.

4. Close the Azure Client IDs dialog.

5. Select the newly created Client ID in the drop down on the connect form.

ZSS Manager is now configured for Azure AD Authentication. During your first authentication attempt
you may receive an error that the user account used has not delegated authority for this app yet. To get past
this perform an Interactive authentication and the Microsoft UI will prompt you to grant access. Subsequent
password or integrated logins will no longer receive this error.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-aad-authentication-configure?

ZSS Manager: User Guide

60

8. Performance Tuning

8.1. Purging History

Imagine this scenario:

• Sarah syncs a Zumero database for the first time. Call this Sync #1

• Several other users make changes in SQL Server.

• Sarah syncs the database again. Call this Sync #2.

During Sync 2, the server will only transfer information about rows that have changed since Sync #1.
It doesn't transfer information about Sync #1, since the client already has that data. This saves time and
bandwidth.

In order to save that time and bandwidth, Zumero must track all of the changes that happen in SQL Server.
We add triggers to your tables which fire to add rows to the change-tracking tables in the zumero schema
in your SQL Server. Since the Zumero server doesn't know how out-of-date a client might be, the change-
tracking tables will, by default, contain information for all changes since your table was first added to the
Zumero DBFile.

In some circumstances, the changes come in frequently enough that the change-tracking tables become
large, and cause performance or disk-space problems. The Purge feature in ZSS Manager allows you to
remove information from the change-tracking tables.

8.1.1. Types of Purge

There are two kinds of change-tracking information, Historical and Row Contents. Imagine these
statements:

INSERT INTO mytable (id, appliance, color) VALUES (72, 'refrigerator', 'stainless');
UPDATE mytable SET appliance = 'washer' where id = 72;
UPDATE mytable SET appliance = 'dryer' where id = 72;

• Historical Data: Historical rows allow Zumero to distinguish all changes made in a single SQL
Server transaction, across multiple rows and tables. In the example statements above, there are
now three distinct versions of the row. The INSERT is row version 1, the first UPDATE is version
2, and the last UPDATE would create version 3.

• Row Contents: Zumero will store the contents of all old versions of a row. In this case, it would
store one entry with data = 'refrigerator' and one entry with data = 'washer'. It doesn't need to store
an entry for 'dryer', since that one is still current.

When you purge, you can choose to purge Row Contents and Historical Data somewhat independently.
Of course, you can't purge Historical Data for a certain transaction without also purging the Row Contents
for that transaction as well.

In the example above, purging Row Contents would remove the Zumero data containing the string
'refrigerator'. Purging Historical Data would remove all Zumero information that version 1 had ever
existed.

8.1.2. Possible Errors After Purging

After you purge, there is an increased chance of your client devices encountering an error. The error will
depend greatly on the state of the client and the type of purge. For client library versions 2.3 and below,
purging Historical Data will always cause client sync errors.

To illustrate this, imagine Ben, a gentle, WiFi enabled bear. In the fall, Ben synced the latest version of
the database. Ben then fell into a state of hibernation, and slept for six months. During Ben's hibernation,

ZSS Manager: User Guide

61

his Zumero administrator faithfully purged data. When Ben finally awoke in the spring, his database is
now six months out of date.

Fortunately, if Ben hadn't made any changes to his client database before hibernating, he won't see any
errors when syncing again in the spring. If the administrator had purged Historical Data older than six
months ago, Ben will download the entire database again, as if it was the first time syncing with his device.
If the administrator had only purged Row Contents, then Ben will only download the changes in the last
six months.

However, if Ben did make changes before hibernating, he may get an error.

• If the administrator purged Historical Data older than six months ago, then Ben's sync will fail
with a Purged Data Referenced error by default. The administrator has an option to choose to
ignore all of Ben's changes by selecting the option "The incoming changes will be ignored and the
client will download a new DBFile" in the Purge dialog. If the administrator chooses that option,
Ben will be able to sync, but all of his changes will be permanently lost.

• If the administrator kept the Historical Data older than six months ago, but purged the Row
Contents, Ben may or may not get an error, depending on the nature of his changes, and what
happened while Ben was hibernating.

Table 1. Syncing Ben's changes after a Row Contents Purge

Operation made before
hibernating

Changes in server while Ben
was hibernating

Outcome

Ben inserted a row Any changes are fine The row will be inserted into
SQL Server

Ben updated a row The row was not changed at all The sync will succeed

Ben deleted a row The row was deleted by someone
else

The sync will succeed

Ben updated a row The row was updated by
someone else

The sync will fail with an error

Ben updated a row The row was deleted by someone
else

The sync will fail with an error

Ben deleted a row The row was updated by
someone else

The sync will obey the Conflict
Resolution setting for the table

8.1.3. Automating Purge

Once you're used to purging, it is possible to automate the process, so that it happens when there isn't a
heavy load on SQL Server. Set up scheduled job in SQL Server to run a statement like this:

DECLARE @t datetime2;
SELECT @t = DATEADD(month, -18, CURRENT_TIMESTAMP);
EXEC [zumero].[PurgeDBFile] @dbfile='foo', @t=@t, @purge_history=0; --@purge_history=0
 means purge contents

SELECT @t = DATEADD(month, -20, CURRENT_TIMESTAMP);
EXEC [zumero].[PurgeDBFile] @dbfile='foo', @t=@t, @purge_history=1; --@purge_history=1
 means purge contents and history

8.1.4. Handlig clients getting purged_data_referenced errors

If a client is in a state where it is getting "purged_data_referenced" errors when it tries to sync, there are
a few different ways to proceed.

ZSS Manager: User Guide

62

• The client could quarantine the change using zumero_quarantine_since_last_sync().
While this would allow the client to sync again, it would effectively abandon all local changes,
as any attempt to use zumero_sync_quarantine() to re-send it later would fail with the same
error.

• Of course there is always the most blunt tool in the toolbox, which is to have the client
delete their client-side database and re-sync from scratch. This is less efficient than using
zumero_quarantine_since_last_sync() and also abandons all local changes, but it works.

• If it is known which rows are causing the error and it is safe to delete them, then the client could
delete those rows. Deleting the rows would change the update operations into delete operations,
thus allowing the push to succeed, since the server will ignore deletes.

• Finally, special conflict resolution rules can be set on a per-table basis so that the server will
ignore updates to purged row versions while accepting the rest of the client's changes. There is
no ZSS Manager user interface to adjust these rules, so the [zumero].[rules_record] table must
be accessed directly. The magic numbers to use are "6" for the "update of purged row version"
situation, and "4" for "ignore". So, for example, the following SQL command could be used to
set the "ignore" rule for our "items" table:

INSERT INTO [zumero].[rules_record] (tbl_id, sit, act, extra) VALUES (12345, 6,
 4, NULL);

We advise against using this setting because its use can — without warning or error — cause loss
of data (i.e. the client's change) depending on what history has been purged (which from the
client's point of view is unknown and fairly arbitrary).

8.2. Adding Indexes to "z$old" Tables

When using a SQL Server profiler to examine Zumero's sync performance, your profiling tool may suggest
that adding a certain index to a z$old table will help. Adding your own index to a z$old table is OK.
The only caveat is that such an index may block certain schema changes on the host table, namely DROP
COLUMN changes. This is because the Zumero DDL triggers will attempt to drop the same column in the
z$old table as well, which will fail if they are included in the index. Because of this potential conflict with
host table operations, we recommend that you keep custom indexes on z$old tables only if they yield a
measurable or noticeable speed improvement.

9. Troubleshooting

9.1. Troubleshooting Error 500

A 500 error means that something unexpected happened on the Zumero server. The best way to find out
more information about the error is to log onto the server computer and open Event Viewer. Click on
the Applications and Services Logs -> Zumero -> Admin node. You should be able to find an event that
corresponds to the 500 error. The General tab should contain more information on the error. Some common
problems that can cause 500 errors

9.1.1. Mis-configured SQL Server connection

An incorrect or missing ODBC connection string will cause the server to return 500 errors. To change it,
perform the following steps:

1. On the server computer, use the Start Menu to open ZSS Server Configuration.

2. Enter the connect string in the ODBC Connection String field. Clicking "Build..." will prompt
you for these values and generate an ODBC string automatically.

https://www.howtogeek.com/school/using-windows-admin-tools-like-a-pro/lesson3/

ZSS Manager: User Guide

63

Example 5. An example connect string

Driver={SQL Server Native Client 11.0};Database={YOUR DATABASE};Server={YOUR
 SQL SERVER};UID={YOUR MSSQL USER};PWD={YOUR MSSQL PASSWORD}

Note

Please note: the driver is important, and will almost always be Driver={SQL Server
Native Client 11.0};

Also note that the curly braces are necessary for fields having spaces.

3. Click the Apply button. There should be no need to restart the Zumero server

9.1.2. Insufficient permissions to the SQL Server database

If you are attempting to use Trusted_Connection in your connection string, it is possible that the
permissions are not set to allow the Zumero server to connect and make changes to your database. During
testing, it is often easier to use the sa account, as illustrated in the above example connect string.

9.2. Troubleshooting License Errors

The Zumero server can return a number of licensing errors. These errors will be returned in situations
where the license or activation keys are invalid or when the server usage has exceeded limits imposed by
the license key. The license errors will be returned to the clients in the sync response and will be logged
in the Windows Event Viewer. To determine the exact nature of the error, log onto the server computer
and open Event Viewer. Click on the Applications and Services Logs -> Zumero -> Admin node. You
should be able to find an event that corresponds to the license error. The General tab should contain more
information on the error.

9.2.1. Invalid Key Errors

These are a series of errors indicate that the license or activation key provided in the IIS site's web.config
file is invalid or malformed. The most likely cause is that the license key was copy and pasted incorrectly.
Locate the original copy of your license key and follow these steps:

1. On the server computer, use the Start Menu to open ZSS Server Configuration.

2. Select the IIS site the error originated from.

3. Enter the license key in the License Key field.

4. Click the Apply button. There should be no need to restart the Zumero server

If the error was not resolved by these steps contact support@zumero.com

9.2.2. License User Limit Exceeded Error

This error indicates that the number of users connecting to the Zumero server exceeds the limit set in your
license key. The Zumero server determines the number of users by examining recent sync activity. In most
cases this error indicates that a new license key needs to be purchased for the increased activity. To do
so contact sales@zumero.com.

It is also possible that the Zumero server is still considering users who are no longer active syncing against
the Zumero server. This could happen if you recently deleted users, decommissioned client devices, or
changed authentication methods. In this case Zumero for SQL Server Manager provides a mechanism for
removing these users from your active user list.

1. Open the Zumero for SQL Server Manager application and connect to your primary database.

https://www.howtogeek.com/school/using-windows-admin-tools-like-a-pro/lesson3/
mailto:support@zumero.com
mailto:sales@zumero.com

ZSS Manager: User Guide

64

2. Select Recent Synchronizations from the Tools menu.

3. Select the user you wish for Zumero to forget in the dialog and click Delete

