SQLite Development with Zumero

SQLite Development with Zumero
Copyright © 2013 Zumero LLC

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 1
1.1 WREE IS ZUMEIO? ..ottt ettt e et e e e e e e na s 1

1.2, WY SYINC? .ottt e ettt 1

1.3 ADOUL ThiS QUIE ...t ettt ettt e e e et e e ene e e 1

1.4. Registering Zumero With SQLITEcoeuiiiiiiiii e 2

2. GEING SEBITEAeeete ettt e ettt e ettt e ettt e et e et e e et n e eeeaa e eee 3
3. Zumero tables vs. regular SQLItE taDIESc.veu i 4
3L Credting TADIES ... 4

I [L= 0 1] L= £SO PR 4

3.3 CONFIICE ClAUSES ...ttt 4

S FOrEIgN KBYS .ottt et et 4

3.5. TaAhleS @re PEIMENENTcoeitieiiii ettt ettt e e enaa s 5

3.6. Optional feature: Strict Type CheCkingoveviiiiiiiii e 5

3.7. Limitations of SQLite virtual tableSooviuiiii i 5
ST.L INAEXES ..ttt 5

3.7.2. Adding columns to an existing tableoooiieiiiiiiiii e 6

3.7.3. Incremental DlOD [/Oooueii 6

I A T I 4T o< £ O TP UPPPTRUPPPPN 6

4. TNE ZUIMEIO SEIVEN ...euiieiiiti ettt ettt ettt ettt e et e ettt e et et e e et et e e et et e e et ab e e e enn s 7
5. CONFHCE RESOIULION ...ttt et e et e et e e e 8
5.1 ROW CONFHICES vttt ettt e e e e s 8
5.1.1. Rules: Situations and ACHIONSccuuuiiiiiiieiiii e 8

5.1.2. COlUMN IMEIGE ..ottt ettt e e e e e 9

5.1.3. Large teXt fIaldsuuiiiiiiiei e 10

B.LA DEFAUITS ...veeieei e 10

5.1.5. EXaMPIE SNIPPELS ..oeveieiiiiiiee ettt 11

B5.1.6. AUAIT TFaIIS ..ot 11

5.2. CONSIraiNt VIOIGHONSieieiieeeii et 12
5.2.1. EXaMPle: CHECK ...ttt 12

5.2.2. EXample: FOraign KEYSuuniiiiiiiii i 13

5.2.3. Example: UNIQUE ... 13

5.2.4. UNIQUE constraints; An ounce Of preventionoooeeveiiieiiiiinneieniineeeenennn. 14

5.2.5. SQLite "INTEGER PRIMARY KEY" COIUMNSooiiiiiiiiiiiiiiecciieeecee 14

6. QUAraNtiNEd PaCKAgESieieiti ettt et 18
AR = o 11 A TSP PP 19
7.1 AULNENTICEIION ..ottt ettt ettt e et et e et e e e e 19

7.2, PEIMNISSIONS ...ttt ettt e et e e et b e ettt e ettt e e et e e e na s 20
7.2.1. ACCESS CONLIOI LiSES vvvnieiiiiie ettt 20

7.2.2. ACL ENIES ..ttt 21

7.2.3. SarChiNG 8N ACL .ot 22

7.3, INEEMNEI AULN ..o e 22

7.4. Securing a newly INStAllEd SEIVEr i 23

7.5. Example: Free Private WIKISiiiii e 24

8. HISOIY .ttt e e eane 28
8.1. HOW HiStOry iS SEOrEUueiieii ettt 28

9. THE SEIVEN LOQ .. eeeetieetiit ettt ettt e e et e et e e et e et e e et eeaaa s 29
9.1. PermiSSion tO 8CCESS ZUMEIO_l0Q «..uuiiirrieeiiiii ettt ettt e e e e eeees 29

9.2. Columns iN the 10g tablei i 29

9.3. Sample ZUMEN0 100 QUENTESceueieieeiie ettt et e e e 30

10. REFEIENCE! FUNCLIONS ...ttt ettt et e et e et e e e e e 32
10.1. NEWOIK BCHVITY ovveeieiiii ettt et e e e e s 32

SQL ite Development with Zumero

0 0t (8 0= o T/) PN 32

10.1.2. zumero_pull_without hiStOry()ccoveeiieiiiiciie e 33

10.1.3. zumero_internal_auth Create()oovveeuiieiiii e 34

10.1.4. zumero_internal_auth add USEr()ccvvvviiieiiiiei e 35

10.1.5. zumero internal_auth_add alias()ccvoveiiiiiiii 35

10.1.6. zumero_internal_auth_set PassWord()covveiviieiiiieein e 36

10.1.7. zumero_internal_auth_set acl entry()cooveviiiiiiiii e 37

10.1.8. zumero_get_storage usage 0N SEIVEN() ..ovvveirnieeiieeiieeei e e e e e e e e eaens 38

10.2. Functions Without Side EffECSvivveeiiieiiii e 38
10.2.1. zumero_internal_auth SCheme()coevniiiiiieii e, 38

10.2.2. zumero_auth SChEME() ...uiiiici e 39

10.2.3. zumero_ Named CONSLANT() +..ovvvurernereiiieiie et e e e e e e e e e e e e et e e e ean s 39

O R Oa 1= 4 1= o o PP 41
10.3.1. zumero_define acl table() ...c.vuveieiiii i 41

10.3.2. zumero_define audit table()oovvviiiiii 41

10.4. Adding conflict resolUtion FUIEScevuiiiiii e 42
10.4.1. zumero_add rowW TUIE() ...ceveeiiiieiiie e 42

10.4.2. zumero_add column FULE()ueviniiii e 42

0T 1V = o PP 43
10.5.1. zumero_alter_table add column()cocoviiiiiiiiii 43

10.5.2. zumero_adopt_existing table()ovvriiiii i 43

T0.6. QUAKAIMLINE . .uuuiiiieeii e e e e e et e e e e e e e e e e et e e et e e et e e et e e et e eateeetn e nanaees 44
10.6.1. zumero_quaranting SiNCE 1ast_ SYNC() ..vvvnevvnieiiiiieii e 44

10.6.2. Zumero_restore qUaranting()eeeureeernierrueeeiiereie e e e e r e 44

O A B 1=)Y/ T o T 1 1 T 44
10.7.1. Zumero_purge NiStory() «.eeueeeein i e e 44

11, RefErenCe: ErrOr IMESSAQES ...ouuiieiii i ettt et et e e e e e e e e e e e e e e e e et e e e et e an e e e e e eanes 45
12. Frequently ASKed QUESHIONSuuuiiiieiiii e i e ee e e e e e e e e e e e e et e e et e e et e e aaeeaannas 46
L0 53

Chapter 1. Introduction

1.1. What is Zumero?

To describe Zumero, we first describe SQL.ite.
SQLite1 isalightweight (but surprisingly powerful) implementation of a SQL database.

SQL.ite is the standard database software for iOS, Android, and Windows RT. It is installed on over a
billion mobile devices.

But like any other computer, and perhaps more so, a mobile device is not isolated. It needs to share data
with a server.

And SQL.ite has no synchronization capabilities.
Zumero solves that problem.

Zumerois"sync for SQLite".

Zumero

Zumero

SQLite SQLite Server

Extension

data.db data.db

1.2. Why Sync?

Many mobile apps are built on the assumption that the network is reliable and aways available. Whenever
the app needs to access the database, it makes a REST call to the cloud. Most user operations require
network activity.

Zumero enables a "replicate and sync" model for mobile database apps. The device has its own copy of
the database. The app can interact with the database without involving the network, so queries and updates
are faster and more reliable. Synchronization with the server can be handled entirely in the background
without the user waiting. When no network connection is available, the app continue to work offline.

1.3. About this guide

This document is primarily focused on explaining how to use Zumero from within SQL ite statements.

thttp:/iwww.sglite.org/

Introduction

Familiarity with SQL.ite development is assumed. Furthermore, this document does not attempt to cover
the wide variety of ways that SQLite can be used from with different languages and platforms. We do
not talk about how to execute SQL statements with SQLite. Rather, we talk about how to construct SQL
statements that make use of Zumero features. This document is applicable regardless of which platform
or language you are using.

When this document discusses Zumero featuresthat are planned but not yet implemented, theword "LAT-
ER" isused.

This document was generated 2013-06-26 11:24:35.

1.4. Registering Zumero with SQLite

Whatever platform you are using, before you can use the new features provided by the Zumero SQL.ite
extension, you need to register it.

The native SQLite APl is C-based®. At the C level, you need to call zumero_register(), passing it the
SQL ite database connection handl e

#i nclude "sqglite3.h"
#i ncl ude "zunero_register.h"

sqlite3* db = NULL;

sqglite3_open_v2(path, &b, SQ.I TE_OPEN _READWRI TE| SQLI TE OPEN _CREATE, NULL);
zuner o_regi ster(db);

Alternatively, the Zumero client library may have been provided as a dynamically |oadable extension:
SELECT | oad_ext ensi on(' zunero.dylib');

In this case, zumero_register() is automatically called for you when the dynamic extension is loaded.

2http://www.sql ite.org/c3ref/intro.html
3http://www.sql ite.org/c3ref/sglite3.html

Chapter 2. Getting Started

If you already know how to develop for SQL.ite, you can start using Zumero by doing just three things:

1. To create aZumero table instead of aregular table, do this:

CREATE VI RTUAL TABLE foo USI NG zunero (...);

2. To create indexes on a Zumero table, prefix the table name with 'z$';

CREATE | NDEX bar ON z$foo (...);

3. To synchronize your Zumero tables with the server, call the zumero_sync() function:

SELECT zuner o_sync(
"main',
"https://nmy_zumero_server/',
"my_dbfil e_nane',

);
Essentially, that'sit.

Inmost ways, aZumero tableworksjust likearegular SQLitetable. Y ou can SELECT, INSERT, UPDATE
and DELETE, exactly like you normally would. (A complete explanation of the differences appearsin
Chapter 3, Zumero tables vs. regular SQLite tables).

Therest of thisdocument isfilled with all kinds of other information we hope you find helpful, but if you
stopped reading now, you and Zumero could still get alot of work done.

Chapter 3. Zumero tables vs. regular SQL.ite
tables

Zumero tables are implemented as SQL.ite virtual tables!. This is the same mechanism which is used to
implement SQL ite's full-text search modul€’.

In most ways, aZumero tableworksjust likearegular SQLitetable. Y ou can SELECT, INSERT, UPDATE
and DELETE, exactly like you normally would.

However, there are other differences, so here is the complete list, roughly sorted from "essential" to "ar-
cane':

3.1. Creating tables

If you create aregular SQL.ite table like this:
CREATE TABLE t (col umm definitions);
Y ou can create the equivalent Zumero table like this:

CREATE VI RTUAL TABLE t USI NG zunero (columm definitions);

3.2. ldentifiers

A Zumero table cannot have any name which contains a dollar sign ($).

A Zumero table cannot be named "*" (asingle asterisk).

Thetable name"z_acl" isreserved for use as an Access Control List.

Thetable name "z_audit" is reserved for use as the conflict resolution audit trail.

In a Zumero table, the column names"z_rv", "z_recid", and "z_txid" are reserved for internal use.

3.3. Conflict clauses

Zumero has partial support for SQL ite conflict cl auses’ (which, by the way, are unrelated to the Zumero's
notion of conflict resolution during sync, as explained in Chapter 5, Conflict Resolution): All five SQL
conflict policies (ABORT, FAIL, ROLLBACK, IGNORE, REPLACE) are supported as clauses for the
INSERT and UPDATE statements, but they are not supported within column definitions for CREATE
TABLE statements.

3.4. Foreign Keys

Foreign keys are supported with the following restrictions:

thttp:/iwww.sglite.org/vtab.html
2http://www.sql ite.org/fts3.html
3http://www.sql ite.org/lang_conflict.html

Zumero tables vs. reg-
ular SQL.itetables

« Foreign key constraints may only appear using the REFERENCES keyword as column constraint,
not as atable constraint.

» Theforeign table must also be a Zumero table.
e The ON DELETE and ON UPDATE clauses are not supported.
e Theconstraint is lways DEFERRABLE INITIALLY DEFERRED.

3.5. Tables are permanent

Zumero tables cannot be renamed or dropped.

3.6. Optional feature: Strict Type Checking

SQL ite doesn't do type checking. Regardless of the type used to declare a column, you can insert any type
of valueintoit.

In cases where a SQLite db file is being synchronized against a "big SQL" (like MSSQL or PostgreSQL)
on the server, Zumero wants SQL iteto be stricter. To facilitate this, Zumero tables can optionally do strict
type checking.

To activate this feature, we add a little bit of extra syntax to the CREATE TABLE statement. Here's an
example of aregular Zumero table:

CREATE VI RTUAL TABLE foo USI NG zunero

(
a | NT,

b TEXT,
UNI QUE (a, b)
K

Here is the same table with strict type checking turned on:

CREATE VI RTUAL TABLE bar USI NG zumner o

(
* WTH_STRI CT_TYPES,

a | NT,
b TEXT,
UNI QUE (a, b)
E

The following statement will fail with a constraint violation, because 'hello' is not an integer:

I NSERT | NTO bar (a) VALUES ('hello');

3.7. Limitations of SQLite virtual tables

Thereareafew featureswhich SQLite doesnot support for virtual tables. Each of theseisexplained bel ow,
with a provided workaround for use with Zumero.

3.7.1. Indexes

SQL.ite does not support the CREATE/DROP INDEX syntax for virtual tables. But you can achieve the
same thing by managing indexes on aunderlying table, which has"z$" prefixed to the Zumero table name.

Zumero tables vs. reg-
ular SQL.itetables

Under the hood, each Zumero table stores its rows in a regular SQL ite table of the same name, prefixed
with z$. For example, if the name of the Zumero table is FOO, the underlying table is z$FOO.

SELECT queries on the Zumero virtual table are simply passed through to the z$ table. Therefore, adding
indexes to the z$ table will do what isintended.

For example, since SQLite will not allow this:
CREATE | NDEX bar ON foo (col);

Do thisinstead:

CREATE | NDEX bar ON z$foo (col);

Note that creation and dropping of indexesis"local" to the current SQLite db file. Zumero does not keep
track of indexes. Changes to the indexes will not be propagated to the Zumero server during sync.

3.7.2. Adding columns to an existing table

SQL.ite does not support the ALTER TABLE ADD COLUMN syntax for virtual tables, but Zumero pro-
vides afunction specifically for this purpose. Instead of:

ALTER TABLE nmi n. foo ADD COLUWN what ever ;
do this:
SELECT zumero_al ter_tabl e_add_col um(' main', 'foo', 'whatever');

‘whatever' must be a column definition which is compatible with SQLite'srestrictionsfor ALTER TABLE
ADD COLUMN®.

After adding a column to a Zumero table, it is necessary to close the SQLite db handle and reopen it.

3.7.3. Incremental blob I/O

SQL ite does not support theincremental blob /O routi nes’ on virtual tables. For Zumero, the workaround
isthesameasitisfor CREATE INDEX. Y ou can work with the blob in the "z$" table instead.

3.7.4. Triggers

SQL ite does not support triggers on virtual tables. Zumero does not support them either. However, it is
possible to create aview on azumero table and then create atrigger on that. Both the view and the trigger
will be"local" to that SQLite db file. Neither will be propagated during Zumero sync operations.

4http://www.sql ite.org/lang_altertable.html
5http://www.sql ite.org/c3ref/blob_open.html

Chapter 4. The Zumero Server

The Zumero server provides:

 Synchronization services (with conflict resolution) for mobile devices.
» A centralized, authoritative copy of your data.
* Security features such as authentication and access control lists.

When you perform a zumero_sync() operation, you are managing two copies of a SQL ite database file,
one on the client, and the other on the server. We can refer to these two copies as two instances of the
same SQL.ite database.

On the client, al of your interaction with the SQL ite database file takes place using the SQLite API (or
somewrapper around it). Y ou can place thefile wherever you want, and the path of that fileistheidentifier
you use to access it. When you open thefile (using, say, sglite3_open_v2() from the SQLite C APl), you
pass it the path.

The Zumero server can manage a[possiblelarge] collection of SQLite database instances. For the purpose
of identifying which one is which, each one is given a unique name. Unlike the filesystem abstraction
presented on aclient, the server's abstraction is aflat list, not a hierarchy.

The Zumero server is very particular about how each SQL ite database instance is named. The name may
contain only lower-case letters, digits, or underscores. Thefirst character must be alower-case |etter. Any
dbfile name that begins with "zumero " is reserved for internal use.

When we speak of a SQLite database file, we often use the term "dbfile", especially when the context
is the Zumero server. Essentialy, "dbfile" is a synonym for "SQL ite database", but with the additional
connotations arising from Zumero's involvement.

It is worth noting here that a dbfile on the server might not actually be represented as a SQL.ite file. The
Zumero server can support synchronization with other SQL implementations such as PostgreSQL .

Chapter 5. Conflict Resolution

When aclient invokes zumero_sync(), it sends a package to the server. This package contains al changes
to the client's copy of the database which have been made since the last time that client was synchronized.

If the server's copy of the database has not been changed in the meantime by other clients, the changes
contained in the incoming package will simply be added to the database.

However, if some other client has already sent a package of changes, it is possible that there will be
conflicts. The Zumero server isresponsible for automatically resolving these conflicts using a set of rules.
These rules can be customized.

There are two basic kinds of conflicts that can happen:

* Row conflicts. The incoming package is trying to modify arow which has already been modified
by another client.

» Congtraint violations. The incoming package causes the violation of a SQL constraint because of
achange that has already been received from another client.

5.1. Row conflicts

Example: Consider a scenario involving two clients, John and Paul, who are sharing a database on the
server.

» Westart the examplewith John, Paul and the server all at version 1 of the database, which contains
arow named "foo" that has avalue of 42.

+ John modifies "foo", changing its value from 42 to 13.
» Paul deletes"foo".
 Both John and Paul perform azumero_sync().

What should happen to "foo"? The server cannot accept both John's change and Paul's change. The two
changes are in conflict.

To answer this question, we first observe that the two zumero_sync() operations will not actually happen
simultaneously. One of them will happen before the other. The first one will occur without incident. The
second one will beidentified as a conflict.

Let's suppose that John's sync was completed first. The change from his incoming package is based on
version 1 of the database. Since the server's copy of the database is also still at version 1, John's change
isincorporated without difficulty, resulting in version 2.

Now the server considers Paul's request, which was al so based on version 1. However, things have changed
since Paul's last sync. The server's copy of the database is now at version 2. So the server examines each
changein Paul'srequest to seeif there are any conflicts. And of course, it discoversthat the current version
of "foo" is not the same as the one Paul is asking to delete.

5.1.1. Rules: Situations and Actions
Thisexampleisjust one of three conflict situations that can happen to a row:
 dituation _del_after_mod

The incoming package is trying to delete a row which has been modified.
 dituation_mod_after_del

Conflict Resolution

The incoming package is trying to modify arow which has been deleted.
 situation mod_after_ mod

The incoming package is trying to modify arow which has been modified.

For the sake of completeness, note that "del after del” is not included here because it is not considered a
conflict. If everbody wants the row to go away, it does.

A row-level conflict resolution ruleis a pairing of a situation and an action. There are three basic actions:
* action_accept

The incoming package wins. The current state of the row is overwritten in favor of the change
requested by the incoming package.

In the Paul and John example, in version 3 of the database, "foo" would not be present.
 action_ignore

Theincoming package loses. The current state of the row is unchanged, and the change requested
by the incoming packageis lost.

In the Paul and John example, in version 3 of the database, "foo" would have the value 13.
 action_reject

The entire incoming package is rejected, causing the sync operation to fail.

In the Paul and John example, the database would stay at version 2, and Paul would be notified
of an error.

Use of action_reject will mean that the mobile device wasted precious network bandwidth to upload a
package which was discarded. There are no conflict situations for which action_reject is the default.

5.1.2. Column Merge
In'situation_mod_after_mod', one other action is available:
 action_column_merge

Instead of resolving this conflict for the row as a whole, examine each column individually, and
try to merge the two versions of the row on a column-by-column basis.

Let'sillustrate this with another example, involving two clients named Ringo and George.
» The Zumero table contains three columns, defined as:

CREATE VI RTUAL TABLE foo USING zurmero (a text PRI MARY KEY, b integer, c integer);

» We start the example with Ringo, George and the server al at version 1 of the database, which
contains one row:

I NSERT I NTO foo (a, b,c) VALUES ('bar', 17, 13);
* Ringo does:
UPDATE foo SET b=289 WHERE a='bar';

» George does:

Conflict Resolution

UPDATE foo SET c¢=169 WHERE a=' bar'

Ringo does:
SELECT zunero_sync(...)

The server's database goes to version 2, and the row is (‘bar’, 289, 13).
George does:

SELECT zunero_sync(...)

When George tries to sync, a 'situation_mod_after_ mod' conflict will occur. Assuming the rules do not
not specify 'action_reject’ as the action, version 3 of the database will be constructed in one of the three
ways, depending on which action is used to resolve the conflict:

action_accept
George's version of the row overwrites Ringo's.

Version 3 of the database: (‘bar’, 17, 169)
action_ignore
George's version of the row isignored.

Version 3 of the database: (‘bar’, 289, 13)
action_column_merge

Since Ringo and George changed different columns, both of their changes can be accepted.

Version 3 of the database: (‘bar’, 289, 169)

In this example, there was a conflict at the row level but not at the column level. If Ringo and George
had both modified the same column, then a column-level conflict would have occurred, which would once
again require looking at the conflict resolution rules to decide how it should be resolved.

Just as with row-level conflicts, arule for resolving a column-level conflict can specify 'action_accept’,
‘action_ignore' or 'action_reject’ as the resulting action.

5.1.3. Large text fields

If the type of the column istext, one additional action is available for resolving a column-level conflict:

5.1.4. Defaults

action_attempt_text_merge

Try to automatically merge the two changes using aline-oriented 3-way merge. The techniqueis
identical to what version control tools do when attempting to automerge two changesto atext file.

Thisaction is used by performing a bitwise OR with another action.

The default action for each of these situationsis:

situation_del_after_mod -- action_ignore
situation_mod_after_del -- action_accept
situation_mod _after_mod -- action_column_merge

10

Conflict Resolution

5.1.5. Example Snippets
Add arow-level rule which appliesto all tables:

SELECT zunero_add_row_rul e(
'main',
NULL,
zuner o_naned_constant (' si tuation_nod_after_nod'),
zuner o_naned_const ant (' acti on_col uimm_nerge'),
NULL
)

Add arow-level rule which applies only to the table called 'foo':

SELECT zuner o_add_row_rul e(
'main',
'foo',
zuner o_naned_const ant (' situati on_nod_after_nod'),
zuner o_naned_const ant (' acti on_col utm_nerge'),
NULL

E

Add a column-level rule which saysthat in the table called ‘wiki', for the column called 'content’, attempt
to automatically merge the text, and if that fails, just accept the change from the incoming package.

SELECT zuner o_add_col umm_r ul e(
'main',
‘wiki',
‘content’,
zuner o_naned_const ant (' acti on_attenpt_text_nerge')
| zunero_naned_constant (' acti on_accept'),
NULL

)

5.1.6. Audit Trails

Whenever Zumero uses rulesto resolve aconflict, it alters data. Optionally, you can preserve an audit trail
of al such changes. Thisinformation can be used to verify that your conflict resolution rules are behaving
in the manner you expect.

The audit trail is stored as a Zumero table called "z_audit”. Its definition looks like this:

CREATE VI RTUAL TABLE z_audit USI NG zuner o
tbl TEXT NOT NULL,
ancestor TEXT NOT NULL,
al ready TEXT,
i ncom ng TEXT,
result TEXT
)k

If you want to capture the audit trail, you must create this table. A convenience function exists for this
purpose;

SELECT zunero_define_audit_table(' main');

If you do not create the z_audit table, no audit trail will be kept.

During conflict resolution, if the z_audit table exists, the Zumero server will add arow to z_audit for each
row conflict resolved.

11

Conflict Resolution

The audit trail table is designed only for the purpose of having a place for the Zumero server to keep a
chronicleof any changesit makesduring conflict resolution. It will INSERT rows, but it doesnot UPDATE
or DELETE. You should not INSERT or UPDATE anything in z_audit. You may, however, DELETE
rows if you want to save space.

Each row of the z_audit table contains the name of the Zumero table plus four versions of the conflicting
row, each one serialized in JSON.

Column Description

t bl the name of the Zumero table

ancest or the row asit appeared before the conflict happened
al r eady the row modified by thefirst client

i nconi ng the row as modified by the second client

resul t the row with its conflict resolved

5.2. Constraint Violations

A constraint violation can happen on the server during sync even when no such problems happened when
those changes were originally committed on their respective clients. The following sections show some
examples of how this can happen.

5.2.1. Example: CHECK

Consider a scenario involving two clients, Nancy and Ann, who are sharing a database on the server.

The database contains one Zumero table, defined as:
CREATE VI RTUAL TABLE foo USING zunero (a int, b int, c int, CHECK (¢ > (a + b)));
And one record:

I NSERT INTO itens (a, b,c) VALUES (10, 20, 50);

We start the example with Nancy, Ann and the server all at version 1 of the database.
Nancy does:

UPDATE itenms SET a=25;

Therow is now (25, 20, 50). Since 50 > (20 + 25), the CHECK constraint is satisifed.
Ann does:;

UPDATE itenms SET b=35;

The row is now (10, 35, 50). Since 50 > (10 + 35), the CHECK constraint is satisifed.
Ann does:;

SELECT zunero_sync(...)

The server's database goes to version 2.
Nancy does:

12

Conflict Resolution

SELECT zunero_sync(...)

Nancy's sync will cause aviolation of the unique constraint, because column merge will result in arecord
(25, 35, 50), which now violates the CHECK constraint, because 50 is not > (25 + 35).

5.2.2. Example: Foreign keys
Consider a scenario involving two clients, Harold and Don, who are sharing a database on the server.

» The database contains two Zumero tables, defined as:

CREATE VI RTUAL TABLE foo USING zunero (a text PRI MARY KEY);

CREATE VI RTUAL TABLE bar USING zumero (b text REFERENCES foo (a));

» We start the example with Harold, Don and the server al at version 1 of the database, which
contains the following row:

I NSERT | NTO foo (a) VALUES ('hello');

» Harold does:
I NSERT | NTO bar (b) VALUES (' hello');
* Don does:

DELETE FROM f 00;

» Don does:
SELECT zunero_sync(...)

The server's database goes to version 2, and the foo table is now empty.
» Harold does:

SELECT zumero_sync(...)

Harold's sync will cause aviolation of the foreign key constraint, because the row he inserted into bar is
referencing arow in foo which no longer exists, because Don deleted it.

5.2.3. Example: UNIQUE
Consider a scenario involving two clients, Phil and Lew, who are sharing a database on the server.

» The database contains one Zumero table, defined as:

CREATE VI RTUAL TABLE foo USI NG zunero (
a text,
b integer,
c doubl e,
UNI QUE (a, b)
)

» Westart the examplewith Phil, Lew and the server all at version 1 of the database, which contains
No rows.

13

Conflict Resolution

* Phil does:

I NSERT | NTO foo (a,b,c) VALUES ('rose', 16, 3.14159);

e Lew does:

I NSERT | NTO foo (a, b, c) VALUES ('rose', 16, 1.41421);

* Lew does:
SELECT zunero_sync(...)

The server's database goes to version 2, with his row inserted into the foo table.
* Phil does:

SELECT zumero_sync(...)

Phil's sync will cause aviolation of the unique constraint.

5.2.4. UNIQUE constraints: An ounce of prevention

Whenever possible, the best way to deal with constraint violations during sync is to carefully design your
app to avoid them happening in the first place.

In practice, the most common situation where a SQL constraint isviolated on the server (when it succeeded
on the client) isa UNIQUE constraint.

With Zumero, any time you INSERT or UPDATE data in a column which has a UNIQUE constraint
(including PRIMARY KEY columns), try to make sure that datais likely to be unique.

5.2.5. SQLite "INTEGER PRIMARY KEY" columns

TL;DR -- By default, Zumero handles SQLite's special "INTEGER PRIMARY KEY" columns by auto-
matically adjusting the values during sync to ensure uniqueness. For most applications, this provides the
desired behavior. In cases where this approach will not work, the behavior can be disabled, requiring the
app to manage things itself.

5.2.5.1. Explaining the problem

An"INTEGER PRIMARY KEY" in SQLiteisa special column?, defined like this:
CREATE TABLE foo (x | NTEGER PRI MARY KEY, y text);

When you declare column x this way, you can omit x from an INSERT statement:

I NSERT | NTO foo (y) VALUES (' hello');

and column x will automatically get an integer value which isone greater than the largest valuein the table
prior to the INSERT?, or if the table was empty, 1.

But in a decentralized environment like Zumero, this approach is likely to cause unique constraint viola-
tions on the server during sync. When SQL.ite chooses the next available integer for column x, it is only

1http://www.sql ite.org/lang_createtable.html#rowid
2http://www.sql ite.org/autoinc.html

14

Conflict Resolution

concerned with uniqueness within that particular SQLite database file, which can be achieved by simply
adding 1 to the previous maximum value in the column. If this happens, say, on multiple mobile devices,
they will all choose the same number, and they will al conflict when attempt to sync.

So, it would be accurate to say that this approach does not merely make constraint violations more likely
-- it essentially guarantees they will happen.

For this reason, SQLite's integer primary key columns require special handling for Zumero.

5.2.5.2. Available compromises

We start by observing that an INTEGER PRIMARY KEY has three attributes:

1. Itisunique.
2. Itisasequential integer.
3. It doesn't change after it is set.

Ina"replicate and sync" architecture, we simply can't have al three of these attributes.

And the first oneis not negotiable. If aPRIMARY KEY does not provide an unambiguous way of refer-
encing exactly onerow, then itisnot aPRIMARY KEY.

So we have to decide which of the other two attributes we are willing to give up. We have two choices:

1. Allow Zumero to change the values during sync to make sure they are unique.
ThisisZumero's default behavior, and isfurther explained in Section 5.2.5.3, “Fixing INTEGER
PRIMARY KEY values during sync”.

2. Stop using sequential integers. This choice can be further broken down into two sub-choaices,
both of which involve using randomness instead of sequential-ness:

a Stop using integers. Use a Universally Unique Identifier (UUID) instead.
This approach would require you to change the column type from INTEGER to TEXT.
See Section 5.2.5.4, “UUIDs as Primary Keys’ for more information.

b. Continue to use integers, but make them random.
This approach allows you to keep the column type as INTEGER, but requires you

to specify the values rather than alowing SQL.ite to choose them for you. See Sec-
tion 5.2.5.5, “Maybe 64 bits are enough?’ for more information.

5.2.5.3. Fixing INTEGER PRIMARY KEY values during sync

Zumero's default behavior is to adjust the values of al INTEGER PRIMARY KEY columns during sync
to ensure that they are unique. This approach is compatible with most applications. Specifically, it should
work for you as long as you are complying with the following guidelines for your INTEGER PRIMARY
KEY column:

» Don'tinsert specific values. Allow SQL.ite to automatically create the value on INSERT.

» Oncethevalueisset on INSERT, don't change it.

» Don't store the value somewhere else unless you declare it as aforeign key.

» Don't assume the value won't change. Until the value is synchronized, it may change. After syn-
chronization, Zumero will not change it again.

If these guidelines are not appropriate for your app, then you should disable this Zumero feature (explained
below) and change your app to manage things in some other way.

15

Conflict Resolution

To instruct Zumero to stop adjusting values of an INTEGER PRIMARY KEY during sync, give the PRI-
MARY KEY constraint aname of "z_ipk_no_change on_sync".

CREATE VI RTUAL TABLE foo USI NG zunero (

x | NTEGER

CONSTRAI NT z_i pk_no_change_on_sync PRI MARY KEY,
y text
)

5.2.5.4. UUIDs as Primary Keys

If you just need each row to have some kind of aunique ID, we can accomplish the goal by using numbers
that are random instead of sequential.

If the notion of using random numbers as keys seems odd, rest assured that the practice is quite common.

The typical solution is something called a "universally unique identifier" (UUID)3, which have become
very widely used in database systems.

A UUID isa128 bit number. In the original version of the UUID specification, those bits were determined
by combining the network address with a timestamp. However, this practice has declined in favor of the
"version 4" UUID, which issimply a 128 bit random number.

Although it may seem unintuitive, when using a high quality random number generator, and with a 128 bit
range, it is astonishingly unlikely to get the same number twice. How unlikely? If you generate a million
numbers per second for 82,000 years, it isless than 1% likely that you will have found a duplicate.

Fortunately, SQL.ite has a built-in random number generator which is of cryptographic quality. We can
use it to generate 16 bytes of random data and convert that to hex. The resulting string is essentialy the
sameasaUUID %,

So, inorder touse UUIDsasaprimary key instead of "INTEGER PRIMARY KEY", we can define column
x likethis:

CREATE TABLE foo (x TEXT PRI MARY KEY NOT NULL
DEFAULT (| ower (hex(randonbl ob(16)))), y text);

Withthisapproach, thereisno need to concern oursel veswith resol ving unique constraint viol ations during
sync, since that will "never" happen.

The main problem with using UUIDs is that they are 128 hits wide. In SQL.ite, integers are only 64 bits
wide, so aUUID will not fit, which means we have to store it in a column of type text instead.

5.2.5.5. Maybe 64 bits are enough?

If we could get by with UUIDsthat are 64 bitsinstead of 128 (which, by the way, meanswe should not call
them UUIDsanymore), that would bereally nice. Integer columnstake up less space and are moreefficient.

Depending on your application, it is actually possible that 64 bits are enough. A 64 bit number can hold
1.8 x 10%° different possible values. That's 1 billion times 1 billion, plus some more. Isit enough?

Ask yourself how many rows your table is going to have.

A table with 190 million rows would have a 0.1% chance of a collision. Most apps on mobile
devices are not likely to have that many rowsin atable.

3http://en.wi kipedia.org/wiki/Universally_unique_identifier
4http://www.sql ite.org/lang_corefunc.html

16

Conflict Resolution

« A table with 6 million rows would have a 0.0001% chance of a collision. For some mobile apps,
atable with that many rows would still be considered enormous.

Then ask yourself how bad the consequences would be for your app if a collision did happen. If aunique
congtraint fails, can you just generate another 1D and try again?

If we decide that a 64 bit random number is appropriate, we have two ways to proceed:
» Keep the column defined as "integer primary key".

But instead of omitting the column on INSERT, specify arandom value.
I NSERT | NTO foo (x,y) VALUES (random(), 'hello');

The advantage of this approach is that column x remains an alias for SQL.ite's rowid column.
* Add DEFAULT (random()) to the column definition.

This approach allows you to continue to just omit column x from INSERT statements.

Ideally, we could implement this idea by simply adding the DEFAULT clause to the column
definition, like this:

CREATE TABLE foo (x | NTEGER PRI MARY KEY DEFAULT (random()), y text):

However, this doesn't work. For special "integer primary key" columns, SQL ite ignores the DE-
FAULT clause.

So we need to do something like this:
CREATE TABLE foo (x |INT PRI MARY KEY DEFAULT (randon()), y text);

Because we are specifying the type as"int" instead of the full word "integer", thisisnow aregular
column. So the DEFAULT clause works as expected.

17

Chapter 6. Quarantined Packages

A quarantined package is a collection of changes which have been removed from the database and placed
in awaiting area. Typically, the reason something is quarantined is because of conflicts. In most cases,
there is no need to quarantine anything. Zumero is designed to manage conflict resolution automatically.
However, in some cases, it is appropriate to "undo” some changes to the client instance of the db.

There are two ways that something can get quarantined:

* You quarantined something intentionally by calling zumero_quarantine_since last_sync().

The primary use case for this function is to remove changes from the client db because the server
refused to accept them during azumero_sync() operation.

» A zumero_sync() operation had to quarantine something because of a conflict that could not be
resolved.

The only way this can happen is when your app makes changes to the database in another thread
while the zumero_sync() operation is happening, AND those changes conflict with new changes
received from the server, AND the conflict cannot be resolved by the rules.

In order to ensure that apps can provide the best experience to users, while zumero_sync() is
waiting for the server to respond, the client database file is not locked. Once the server has re-
sponded, zumero_sync() checksto seeif the db was changed during the network request. If so, it
quarantines any such changes. Then the db is updated with any changes from the server. Finally,
zumero_sync() tries to restore the quarantined package. If there are no unresolvable conflicts or
constraint violations, this will succeed, and the quarantined package will be removed, and you
need never know that the quarantine ever happpened. However, if the restore of the quarantined
package fails, it staysin the quarantine area.

For the best user experience, we recommend that you perform zumero_sync() in a background
thread. Users of a Zumero app should never have to wait for the network. However, it is also a
good practice to avoid performing a zumero_sync() while the user is actively using the app. If
you only sync when the user isidle, then zumero_sync() will not need to quarantine anything.

When a package is quarantined, it is stored in a housekeeping table (named t$q). Therowid of that tableis
called the "quarantineid". Thisid can be used to reference the quarantined package for various operations.
For zumero_quarantine_since last_sync(), the quarantine id is returned as the result of the function. If
something gets quarantined during zumero_sync(), the quarantine id will be included in the return value.

The quarantine feature is an advanced aspect of Zumero. If you are careful to avoid conflicts during sync,
you won't need to useit.

18

Chapter 7. Security

The Zumero server supports security features which can be used to control who has permission to read
or write dbfiles.

» BEvery request from aclient can optionally include credentials for authentication.

» Each dbfile can have an Access Control List containing entries which allow or deny accessto an
item based on the effective identity resulting from authentication.

e The Zumero server can support multiple authentication schemes.

» A built-in authentication scheme called "internal auth™ allows a Zumero dbfile to contain user/
password pairs which can be used for authentication.

7.1. Authentication

Every request from a client can optionally include credentials for authentication. A set of credentials in-
cludes three things:

» scheme
e username
 password

The scheme defines the scope in which the username and password exist. It describes how and where the
username/password pair is to be validated.

Under the hood, the schemeisa JSON string. The "scheme_type" key must always be present, and it must
contain arecognized name for the type of scheme being described. The JSON object may also contain any
additional name/value pairs which are appropriate for that kind of authentication scheme.

For example:

{
"schenme_type" : "tel ephone",
"nunber" : "719-555-1234"

}

This scheme string refers to an absurd (but conceptually valid) authentication scheme called "telephone”.
Authenticating a with this scheme would require the Zumero server to call a phone number (which is
provided in the scheme string) and ask if the username/password pair is valid.

Let's say a client wants to present authentication credentials based on this scheme. It would submit three
items with its request:

» ascheme string: { "scheme_type" : "telephone”, "number" : "719-555-1234" }
* ausername: Madonna
 apassword: holiday

When the Zumero server receives credentials with a scheme string containing an unrecognized
"scheme_type", it returns an "authentication failed" error.

However, if the Zumero server is configured to recognize the authentication scheme type named "tele-
phone-"l, then it will pick up the nearest phone and call the provided number and ask, "Do you recognize
user 'Madonna with password 'holiday'?"

The Zumero server will never support the "telephone" authentication scheme type.

19

Security

If the person on the other end of the phone call says"Nope!", then the server will return an "authentication
failed" error back to the client.

Otherwise, the authentication succeeds, thus establishing the effective identity for this request.

The effectiveidentity for arequest isthe pairing of the scheme string and the user name. For this example,
the effective identity pair would be:

» { "scheme_type" : "telephone”, "number" : "719-555-1234" }

» Madonna
By the way, it is worth noting that the effective identity aboveis completely different from this one (note
the different phone number):

» { "scheme_type" : "telephone”, "number" : "312-555-1234" }

* Madonna

Somebody named Madonnain Colorado (area code 719) is quite likely to have different permissions than
somebody named Madonna in Chicago (area code 312).

Also worth noting: If the client provides no credentials, the server continues to process the request without
authentication. The effective identity is null. We use the word "anonymous' in describing this situation.

Anyway, the server will now proceed to figure out if the effective identity actually has permission to do
whatever the client is requesting.

7.2. Permissions

Every request from a client will be denied unless the effective identity has been granted the necessary
permission(s).

Note that simply being authenticated grants no permission to do anything. Even after successful authenti-
cation, the effective identity of "Madonnain Colorado” will not be able to do anything unless that identity
has been granted permissions.

7.2.1. Access Control Lists

Every dbfile can optionally have an Access Control List (ACL) which grants or denies permission to do
operations on that file. The ACL is aZumero table with a specific set of columns.

Conceptually, you could add an ACL table by doing this:

-- for illustration purposes only
-- don't do this
-- use the zumero_define_acl _table() function instead

CREATE VI RTUAL TABLE | F NOT EXI STS z_acl USI NG zunero (
schenme TEXT NOT NULL,
who TEXT NOT NULL,
tbl TEXT NOT NULL,
op TEXT NOT NULL,
result TEXT NOT NULL
)

It isimportant that the ACL table have exactly those five columns with exactly those names. For conve-
nience, Zumero provides a function which creates a properly-formed ACL table:

20

Security

SELECT zunero_define_acl _table(' main');

Under the hood, thisfunction executesa CREATE VIRTUAL TABLE statement which is somewhat more
complicated than the one above because it includes extra constraints for error-checking purposes.

7.2.2. ACL Entries
An ACL entry (arow inan ACL table) has 5 columns:

scheme
who

thi

op

. result

a c DN

The first four are used to determine whether the entry matches. The result is either ‘allow’ or 'deny'.

7.2.2.1. who and scheme (effective identity)

The who column can have four possible values:
» zumero_named_constant(‘acl_who_anyone') -- Match anyone, whether they are authenticated or
not. In this case, the scheme column is unused and should be an empty string.

» zumero_named_constant(‘acl_who_any authenticated user’) -- Match any authenticated user
from the provided scheme. The scheme column is mandatory.

» zumero_named_constant(‘acl_who_specific_user') -- Match a specific user, the name of whichis
concatenated after the named constant. The scheme column is mandatory.

» zumero_named_constant(‘acl_who_specific_group’) -- Match any user who is a member of a
group, the name of which is concatenated after the named constant. The scheme columnis manda
tory. The meaning of agroup is defined by the authentication scheme.

7.2.2.2. tbl

For acl_op_tbl_add row, acl_op_tbl_modify_row, and acl_op tbl_add_column, the tbl column can be
either the name of a Zumero table or *", awildcard which will match any table.

For all other ops, the thl column must be an empty string.

7.2.2.3. 0p

The op column can be either **, awildcard which will match any operation, or one of the named constants
below. If the op column is ™', then the thl column must be an empty string.

» acl_op pull -- Retrieve all or part of a dbfile from the server to the client

Permission to pull a dbfile is an all-or-nothing proposition. Either a user has permission to see
every table and row in the dbfile or they do not.

e acl_op create table -- Create atable

The tbl column should be an empty string.
» acl_op tbl_add row -- Add arow to atable

21

Security

e acl_op tbl_modify_row -- Update or delete arow in atable

e acl_op thl_add column -- Add a column to an existing table

» acl_op add rule-- Add aconflict resolution rule

e acl op auth_add user -- Add auser to an internal auth db

e acl _op auth_set password -- Set a user's password in an internal auth db
e acl _op auth_set acl entry -- Set an ACL entry for an internal auth db

e acl_op create dbfile-- Create adbfile

7.2.3. Searching an ACL
When searching an ACL for a matching entry, the inputs are:

e The effective identity
e The operation to be performed

e Thetableinvolved in the operation (if any)

ACL entries are searched in order from most-specific to least-specific. As soon as a match is found, the
search is done. The result of the ACL check (allow or deny) is determined by the first ACL entry which
matches.

When checking permissions for an operation, the Zumero server looks for any Access Control List entries
which match the effective identity.

If there are no matching ACL entries, then the following defaults apply:

« If the dbfile involved in this operation was created by an authenticated user, check to seeif the
effective identity for the current request is the same asthat user. If so, allow. Otherwise, deny.

» Alternatively, if the dbfile was created by ‘anonymous, allow.

That last rule bears repeating: a dbfile created by anonymous is accessible to anyone unless there is an
ACL entry to deny. If you don't want this to happen, then don't allow anonymous to create anything, or
make sure that explicit ACL entries arein place..

7.3. Internal Auth

Obviously, the running example using the telephone scheme_typeisfake.
A more redlistic example might look like this:
"schenme_type" : "LDAP",

"server" : "127.0.0.1",
}

(LATER) Note that the Zumero server doesn't actually support LDAP authentication yet.

One authentication scheme that is currently supported is the built-in scheme called "internal auth". This
scheme allows a dbfile to contain alist of users with passwords.

The scheme string for an internal auth dbfile would look this:

22

Security

"scheme_type" : "internal",
"dbfile" : "foo"

}

where "fog" is the name of the dbfile which contains the user/password entries.
Oneinstallation of the Zumero server can have multiple internal auth dbfiles.

Notethat aninternal auth dbisjust aregular Zumero dbfilewith a'users' table which has a specific schema.
However, for security reasons, we don't want anyone to synchronize this dbfile down to their client. In
this particular case, a"replicate and sync" design would risk exposing information we prefer exist only on
the server. Therefore, Zumero provides several functions which allow clients to work with internal auth
remotely.

» To create an auth db, use zumero_interna_auth_create().

» Toadd auser to an auth db, use zumero_internal_auth_add_user().

» To change a password, use zumero_internal_auth_set password().

e Toaddanalias, use zumero_internal_auth_add alias(). An aliasis ausername which, instead of
apassword, has a"pointer" to another dbfile/username.

For example, suppose we have two dbfiles named "admins' and "users'. The "admin" dbfile
contains a user named Chet, but Chet is not just an admin -—— he is also a user. If we added a
Chet user to both dbfiles, then Chet would have two passwords. Instead, we add an alias to the
"users" dbfile. When authenticating users/Chet/password, Zumero will see the alias and verify
password against admins/Chet instead.

7.4. Securing a newly installed server

All Zumero servers provided as part of our cloud hosted service have already been configured as
described in this section.

During signup, you were asked to provide a password for the ‘admin’ user. Y ou should think of your
‘admin’ user like 'root' on aUnix system, or an Administrator account for Windows. It ismostly used
for administration, initial setup, and to create other usersthat will be endowed with fewer privileges.

The'admin' user iscreated in an internal auth dbfile named 'zumero_users admin'. Y ou should only
add new users to this dbfile if those users are intended to have administrator privileges.

Depending on how aZumero server isinstalled, it may beinitially configured with permissionsthat allow
anyone to create adbfile.

This permission is configured by creating a dbfile called "zumero_config" containing an ACL with an
entry for acl_op_create dbfile.

If the "zumero_config" dbfile was not created for you when your Zumero server was installed, you will
probably want to create it before you do anything else.

Example:

First we need an internal auth db to list people who are allowed to create a dbfile. Then we create
zumero_config and add an acl which points to the auth db we just created.

The SQL commands for this operation look something like this:

23

Security

SELECT | oad_ext ension(' zunero.dl|");

SELECT zumero_i nternal _aut h_creat e(
"https://server',
' zumer o_users_admi n',
NULL,
NULL,
NULL,
"admin',
"you shall not pass',
zuner o_i nternal _auth_scheme(' zunero_users_admn'),
zuner o_naned_const ant (' acl _who_any_aut henti cat ed_user'),
zuner o_i nternal _auth_scheme(' zunero_users_admn'),
zuner o_naned_const ant (' acl _who_any_aut hent i cat ed_user')

IE
BEG N TRANSACTI ON,
SELECT zunero_define_acl _table(' main');

-- Don't let anyone do anything with this dbfile
I NSERT | NTO z_acl (schemre, who, tbl, op,result) VALUES (

zuner o_naned_const ant (' acl _who_anyone'),

’
[

zuner o_naned_const ant (' acl _resul t _deny')

E

-- except adm ns
I NSERT | NTO z_acl (schemne, who, tbl, op,result) VALUES (
zuner o_i nternal _auth_scheme(' zunero_users_admn'),
zuner o_naned_const ant (' acl _who_any_aut henti cat ed_user'),

’
[

zumer o_naned_constant (' acl _result_al | ow)

IE
-- explicitly mention create_dbfile, for clarity of this exanple
I NSERT | NTO z_acl (scheme, who, tbl, op,result) VALUES (

zuner o_i nternal _auth_scheme(' zunero_users_admn'),

zuner o_naned_const ant (' acl _who_any_aut hent i cat ed_user'),

zuner o_naned_const ant (' acl _op_create_dbfile'),
zuner o_naned_constant (' acl _result_allow));

COWM T TRANSACTI ON,

SELECT zumero_sync('main',' https://server', 'zumero_config', NULL, NULL, NULL);

If you paste the commands above into atext file called "my_install.sgl" (making the appropriate edits for
yourzserver URL and username/password), then you can execute them with the SQLite command line
shell<;

sqlite3 :nenory: -init nmy_install.sql

7.5. Example: Free Private Wikis

Suppose we want to provide a cloud-hosted wiki service with the following requirements:

2nttp://sqlite.org/sglite.html

24

Security

» Anyone can create awiki.

» The creator of the wiki can control who is allowed access to it.
Implementing this service using Zumero:

e Weneed aninternal auth db to list the wiki owners. Create atemporary SQL.ite file and do this:

SELECT zunero_i nternal _aut h_creat e(
"https://server',
' owners',
zunero_i nternal _aut h(' zunmero_users_adnmin'),
‘admin',
‘my admi n password',
NULL,
NULL,

zuner o_naned_const ant (' acl _who_anyone'),
NULL,
NULL

)

We use the admin user to perform this operation. Note that 'owners' is configured to allow anyone
to add a user, so the app can support self-registration.

» Now we configure the server so that only peoplein dbfile"owners' can create adbfile. In another
SQL.itefile (atemporary or memory db will suffice), do this:

SELECT zunero_define_acl _table(' main');
I NSERT | NTO z_acl (schene, who, tbl,op, result) VALUES (
zuner o_i nternal _aut h_scheme(' owners'),
zuner o_naned_const ant (' acl _who_any_aut henti cat ed_user'),

zuner o_naned_const ant (' acl _op_create_dbfile'),
zuner o_naned_constant (' acl _result_allow));

SELECT zunero_sync('main' ,'https://server', 'zunero_config', ...);

e Theapp hasa"Create Wiki" feature which allows someone to create their own wiki. Thisfeature
prompts the user for a password and creates a user in the ‘owners dbfile.

SELECT zunero_i nternal _aut h_add_user (

"https://server',

' owners',

NULL,

NULL,

NULL,

"Aretha',

'respect’

)i

Now we want another internal auth db to store the members of this wiki. We configure it so that
only the wiki owner can add users:

25

Security

Now we want to create the wiki itself:

26

Security

27

Chapter 8. History

When Zumero is doing synchronization, it sends packages of incremental changes between client and
server. For example, the client pushes a package which contains only the changes which have been made
sincethelast sync. Thereisno reason to send anything that happened prior to the last sync, since the server
already knows about it.

In order to facilitate this, Zumero keeps track of every change you make to the database. With a regular
SQLite table, after you INSERT/UPDATE/DELETE something, the state of the database prior to that
operation is forgotten. But every time you modify a Zumero table, in addition to doing what you asked,
Zumero stores a delta, a representation of what operation you performed.

Theinformation contained in adeltais complete. It describes exactly how the database after your modifi-
cation is different from how it was before. In theory, we could undo committed transactions by applying
the deltasin reverse.

Here is another way to say this: With a Zumero table, nothing ever really gets deleted.

Here is yet another way to say this. With Zumero, all changes to the database are additive. When you
delete arow, what you are really doing is adding a state wherein that row does not exist.

For some apps, the retention of this historical information isagood thing. The next section describes how
the history is stored and made available for appsto use.

For other apps, al that history is just taking up precious space on the mobile device. The
zumero_purge_history() function can be used to reclaim space.

8.1. How History is Stored

When you create a Zumero table called FOO, under the hood, your rows are actually stored in a regular
SQL.ite table called z$FOO (the prefix z$, concatenated with the name of your table).

The z$FOO table contains exactly what FOO would contain if it were aregular table instead of a Zumero
table. When you DELETE arow from FOO, it really does get deleted from z$FOO.

Zumero also maintains another underlying table called zoldFOO (the prefix zold, concatenated with
the name of your table). This table contains rows (or versions of rows) that are not being used anymore.

When you DELETE arow from FOO, what actually happensis that Zumero removes it from z$FOO and
adds it to zoldFOO.

When you UPDATE arow in FOO, before updating the row in z8FOO, Zumero copiesit to z$ol d$FOO.
The row ends up existing in two versions. The current version is in z8FOO. The old version of the row
isarchived in zoldFOO.

Both of these tables contain all of your columns. The main difference between them is simply that one
contains all your current stuff, and the other contains all of your old stuff.

If you want to access history, you can SELECT from the zold table.
The zumero_purge_history() function deletes the old rows from all the zold tables in your database.

For the initial sync to retrieve a dbfile from the server to an empty SQL.ite file on the client, you can use
the zumero_pull_without_history() function instead of zumero_sync().

28

Chapter 9. The Server Log

The Zumero server logs al client requests into a dbfile called "zumero_log". This dbfile can be synchro-
nized down to a client (perhaps a client on aserver or workstation rather than a mobile device) for inspec-
tion, analytics, or reporting purposes.

9.1. Permission to access zumero_log

By default, the ACL table in zumero_log is configured to disalow all access. To gain permis-
sion to pull zumero_log, you must request with the credentials of an authenticated user in the auth
db called zumero_users_logl. (If you need to add a user to zumero_users log, you will need to
zumero_internal_auth create() it (if it doesn't exist), and then zumero_internal_auth _add_user().)

9.2. Columns in the log table

Inside zumero_logisatable called "log" which contains the following columns:

Column Description

dbfile The name of the dbfile involved in the client request
url The path portion of the URL requested by the client.

 /pull

e /push

e /auth create

e Jauth_add user
 Jauth_add_alias

e Jauth_set password
e Jauth_set acl_entry

i p_address The IP address of the client making the request

uni x_time The time of the request as unix time?

schene The scheme string from the credential s provided by the client

user nane The username from the credentials provided by the client

request _si ze The compressed size of the package being pushed from the client, in
bytes

response_si ze The compressed size of the response package being sent back down

totheclient, in bytes

st at us The HTTP status code of the response

» 200 -- successful request, response package sent back to the
client

e 204 -- successful request, no response package sent back

e 304 -- /pull, but nothing new to send back

e 401 -- authentication failed

IMembers of zumero_users_admin are also allowed.

29

The Server Log

Column Description
e 403 -- permission denied
¢ 406 -- database constraint violation

el apsed The amount of time necessary to process the request, in milliseconds
constraint_details Details about any constraint violation that occurred, in JSON

full _request_size Same as request_size, but uncompressed

full _response_si ze Same as response_size, but uncompressed

t xi d_max (internal use)

8http://en.wikipedia.org/wiki/Unix_time

 Each time the server process is launched, an extra log entry is added with
url=SERVER_STARTUP.

» Whenever a new dbfile is created as part of a push request, an extra log entry is added with
url=CREATE_DBFILE. The entry for the push operation isincluded as well.

 For url=/pull, if full_response sizeis 0, the response package came from the server cache.

9.3. Sample zumero_log queries

Average elapsed time for each kind of client request:

sglite> . headers ON

sqglite> SELECT url, avg(el apsed) avg_tinme FROM z$l og GROUP BY url ORDER BY avg_ti me DESC,
url|avg_tinme
SERVER_STARTUP| 46. 0

/ push| 20. 0091743119266

/aut h_set _password| 17.0

/aut h_add_user| 15. 8928571428571
/auth_create| 13. 125
/auth_set _acl _entry| 10. 625
/pull'|7.26923076923077
/auth_add_alias|6.0
CREATE_DBFI LE| 0. 0

Average size of a package pushed from a client:

sqgl i te> SELECT avg(request_size) FROM z$l og WHERE url ="/ push’
avg(request_si ze)
1664. 90825688073

Total outgoing bandwidth used:

sqgl i te> SELECT sun(response_si ze) FROM z$l og
sun(response_si ze)
228613

Total incoming bandwidth used:

sqgl i te> SELECT sun(request_si ze) FROM z$l og
sun(request _si ze)
181475

List of people who tried to do something that didn't have permission to do:

30

The Server Log

sqgl i te> SELECT DI STI NCT schene, user name FROM z$l og WHERE st at us=403
schemne| user name

I

aragorn| {"schene_type":"internal","dbfile":"t07c82f ec97b103c9c2420be9"}
aragorn| {"schene_type":"internal","dbfile":"t562430406c732c3f bb9bc2be"}
aragorn| {"schene_type":"internal","dbfile":"tc3e0861a6584104341739233"}
frodo| {"schene_type":"internal","dbfile":"t287a4cab223bd0399ef 4cb"}
frodo| {"schene_type":"internal","dbfile":"tbb3cdadf 930f ee621bdc97"}
gandal f | {"schene_type":"internal","dbfile":"t07c82f ec97b103c9c2420be9"}
saruman| {"schene_type":"internal ", "dbfile":"tbb3cdadf 930f ee621bdc97"}
strider|{"schene_type":"internal","dbfile":"tbb3cdadf 930f ee621bdc97"}

Average compression percentage for packages pushed by clients:

sqglite> SELECT 100 - avg(request_size * 100 / full_request_size)
FROM z$l og
VWHERE ful | _request _size > 0

100 - avg(request_size * 100 / full _request_size)

83. 6574074074074

31

Chapter 10. Reference: Functions

Most of the Zumero functions should bethought of as procedures. They are designed to be called to achieve
side effects, not to return avalue for use in a query expression.

Nonetheless, the only way to execute a function in SQL.ite is during the evaluation of an expression, so
calling aZumero function is accomplished by a SELECT statement:

SELECT zunero_do_sonet hing(...)

Some of SQL.ite's own built-in functions use this pattern as well. For example, load_extension().

10.1. Network activity

10.1.1. zumero_sync()

Synchronize the SQL ite database with a dbfile on the server.

zuner o_sync(
attached,
server _url,
dbfile,
credenti al s_scheneg,
credenti al s_user,
credenti al s_password,

temp_dir
)
Parameter Description
attached name of the attached database, usually 'main’
server _url https:.//wherever
dbfile name of the dbfile on the server
credential s_schene (optional) credentials for this sync. auth scheme string.
credential s_user (optional) credentials for this sync. user name.
credential s_password (optional) credentials for this sync. password.
tenp_dir (optional) path for the directory to be used for temporary files

Return value: a string, containing a semicolon-separated list of integers:

1. partial -- If thelocal database is now up-to-date with the server dbfile, thisvalueis 0. If the app
needs to call zumero_sync() again to retrieve more data, this value is >0.

2. quarantine -- If it was necessary to quarantine something during sync, this value isthe id of the
guarantined pacakge. Otherwise 0.

3. bytes up full -- The size of the uncompressed package which was pushed to the server, in bytes.

4. bytes down_full -- The size of the uncompressed package which was received from the server,
in bytes.

5. bytes up compressed -- The size of the compressed package which was pushed to the server,
in bytes.

32

Reference: Functions

. bytes down _compressed -- The size of the compressed package which was received from the

server, in bytes.

7. elapsed_ms net -- The amount of time spent waiting for the server to respond, in milliseconds.
8. elapsed_ms total -- The amount of time required for the entire sync operation, in milliseconds.

Notes:

This function may be called with 3, 6, or 7 parameters. The attached db, server_url and dbfile
parametersare aways required. The authentication credentialsare optional, but if you specify any
of them, you must specify all three. The temp_dir parameter is optional. If you need to specify
parameters you don't actually need in order to specify alater parameter, use NULL.

This function involves network activity and will block until the sync operation is complete. Best
practiceisto call thisfunction in a background thread.

To perform the sync without authenticating, omit or pass NULL for scheme, user, and password.
It isan error to call zumero_sync() within an explicit transaction.

If alarge amount of information needs to be pulled from the server, this function may need to be
called more than once. Check the return value to seeif the sync operation was complete or not.

If the corresponding dbfile on the server does not exist, it will be created (unless the local db
fileis empty).

A SQL.ite file should be synced against only one remote dbfile.

A dbfile name must begin with alower-caseletter and must contain only lower-caseletters, digits,
or underscores. Any dbfile name that begins with "zumero " is reserved for internal use.

10.1.2. zumero_pull_without_history()

NOTE: zumero_pull_without_history() is currently available for testing only, in the client SDK and
the Development Server [http://zumero.com/dev-center/]. Support for live applications, synching with
zumero.net, will be available in the very near future.

Retrieve a copy of adbfile from the server with its history already purged.

zuner o_pul I _w t hout _hi st ory(
attached,
server_url,
dbfile,
credenti al s_scheneg,
credenti al s_user,
credenti al s_password,
tenp_dir

)

Notes:

» This function is nearly identical to zumero_sync(), with one major difference: When

zumero_pull_without_history() isused asthefirst sync to retrieve adbfile from the server, it will
be retrieved with its history aready purged.

This function is handy for situations where you want to keep the history purged from the client-
side instance of adbfile for the purpose of saving space. If this function did not exist, you would
need to do afull zumero_sync(), followed by azumero_purge_history(). By calling this function
instead, you avoid retrieving a large amount of information from the server that you plan to im-
mediately purge.

It is an error to call this function on a client dbfile that is not empty. This function may on-
ly be called once for a given client dbfile. All future sync operations on that file must use

33

http://zumero.com/dev-center/
http://zumero.com/dev-center/

Reference: Functions

zumero_sync(), following by azumero_purge_history() call if you want to continue purging his-
tory asthe dbfile grows.

 All parameters to this function are identical to the parameters of zumero_sync().

» Thereturn value of thisfunction isidentical to the return value of zumero_sync(). If the 'partial
field is non-zero, you should call zumero_sync() to retrieve more.

» Likezumero_sync(), this function involves network activity and will block until the sync opera-
tion is complete. Best practiceisto cal this function in a background thread.

10.1.3. zumero_internal_auth_create()

Setup an internal auth dbfile on a server.

zuner o_i nternal _aut h_creat e(
server _url,
dbfile,
credenti al s_scheneg,
credenti al s_user nane,
credenti al s_password,
first_usernane,
first_password,
al | ow_add_schene,
al | ow_add_who,
al | ow_nod_schene,
al | ow_nmod_who

)

Parameter Description

server _url https://wherever/

dbfile name of the dbfile on the server

credential s_schene credentials for this operation. auth scheme string.
credenti al s_user nane credentials for this operation. user name.

credential s_password credentials for this operation. password.
first_usernane name of afirst user to be created. optional (can be null)
first_password password for the first user to be created. optiona (can be null)
al | ow_add_schene scheme string for an ACL entry for acl_op_auth add_user
al | ow_add_who who for an ACL entry for acl_op auth_add_user

al | ow_nod_schene scheme string for an ACL entry for acl_op_set_acl_entry
al | ow_nod_who who for an ACL entry for acl_op_set_acl_entry

Return value: NULL
Notes:

e Permission to perform this operation depends on the credentids provided and the
‘acl_op create dbfile entry.

* For security reasons, the ACL for this dbfile is configured to disallow pull.

« A dbfile name must begin with alower-case | etter and must contain only lower-case| etters, digits,
or underscores. Any dbfile name that begins with "zumero " is reserved for internal use.

 This function makes no changes to the SQL ite database attached to the connection in which it
is executed.

Reference: Functions

10.1.4. zumero_internal_auth_add_user()

Add anew user to an interna auth dbfile on a server.

zuner o_i nt ernal _aut h_add_user (
server _url,
dbfile,
credenti al s_schene,
credenti al s_user,
credenti al s_password,
new_user,
new_password

)

Parameter Description

server _url https://wherever/

dbfile name of the dbfile on the server

credential s_schene credentials for this operation. auth scheme string.
credenti al s_user credentials for this operation. user name.
credenti al s_password credentias for this operation. password.
new_user name of the user to be created

new_passwor d password for the user to be created

Return value: NULL

Notes:

» Thisfunctionis provided because an internal auth db is normally not allowed to be pulled down
toaclient.

e Permission to perform this operation depends on the credentids provided and the
‘acl_op auth_add_user' entry within the ACL table of the dbfile.

 Attempting to add a user name which already exists will result in a'unique_constraint_violation'
error.

A dbfile name must begin with alower-caseletter and must contain only lower-caseletters, digits,
or underscores. Any dbfile name that begins with "zumero_" isreserved for internal use.

» This function makes no changes to the SQL ite database attached to the connection in which it
is executed.

10.1.5. zumero_internal_auth_add_alias()

Add an alias to an internal auth dbfile on a server.

zuner o_i nternal _aut h_add_al i as(
server _url,
dbfile,
credenti al s_schene,
credenti al s_user,
credenti al s_password,
new_user nane,
ot her _dbfile,
ot her _user nanme

)

35

Reference: Functions

Parameter Description

server _url https://wherever/

dbfile name of the dbfile on the server

credenti al s_schene credentials for this operation. auth scheme string.

credential s_user credentials for this operation. user name.

credenti al s_password credentials for this operation. password.

new_user name name of the user to be created

ot her _dbfile name of the dbfile containing the underlying username. optional
(may be null)

ot her _user name name of the underlying username. optional (may be null)

Return value: NULL

Notes:

» Thisfunction is provided because an internal auth db is normally not allowed to be pulled down
toaclient.

e Permission to perform this operation depends on the credentids provided and the
‘acl_op_auth_add_user' entry within the ACL table of the dbfile.

 Attempting to add a user name which already exists will result in a'unique_constraint_violation'
error.

* If other_dbfileisnull, smply check for other_username in the same dbfile.

o If other_usernameis null, simply check for new_username in the other dbfile.

« Either other_dbfile or other_username (or both) must be non-null.

» The permissions on the alias are distinct from the permissions on the underlying user.

* A dbfile name must begin with alower-case | etter and must contain only lower-caseletters, digits,
or underscores. Any dbfile name that begins with "zumero " is reserved for internal use.

 This function makes no changes to the SQL ite database attached to the connection in which it
is executed.

10.1.6. zumero_internal_auth_set _password()

Change the password for a user in an internal auth db on the server.

zuner o_i nternal _auth_set _passwor d(
server_url,
dbfile
credenti al s_scheneg,
credenti al s_user,
credenti al s_password,

user nane,
passwor d
)
Parameter Description
server _url https://wherever/
dbfile name of the dbfile on the server
credenti al s_schene credentials for this operation. auth scheme string.

36

Reference: Functions

Parameter Description

credenti al s_user credentials for this operation. user name.
credential s_password credentials for this operation. password.
user nane name of the user

password new password for the user

Return value: NULL
Notes:

» Thisfunction is provided because an internal auth db is normally not allowed to be pulled down
toaclient.

* Permission to perform this operation depends on the credentids provided and the
‘acl_op_auth_set password' entry within the ACL table of the dbfile.

* A dbfile name must begin with alower-case | etter and must contain only lower-caseletters, digits,
or underscores. Any dbfile name that begins with "zumero " is reserved for internal use.

» This function makes no changes to the SQLite database attached to the connection in which it
is executed.

10.1.7. zumero_internal_auth_set_acl_entry()

Add an ACL entry to an internal auth db.

zuner o_i nternal _aut h_set _acl _entry(
server _url,
dbfile,
credenti al s_scheneg,
credenti al s_user,
credenti al s_password,

schene,

who,

thl,

op,

resul t,

)
Parameter Description
server _url https://wherever/
dbfile name of the dbfile on the server
credenti al s_schene credentials for this operation. auth scheme string.
credenti al s_user credentials for this operation. user name.
credential s_password credentials for this operation. password.
schene Section 7.2.2, “ACL Entries’
who Section 7.2.2, “ACL Entries’
t bl Section 7.2.2, “ACL Entries’
op Section 7.2.2, “ACL Entries’
resul t Section 7.2.2, “ACL Entries’

Return value: NULL

37

Reference: Functions

Notes:

» Thisfunctionis provided because an internal auth db is normally not allowed to be pulled down
toaclient.

 Thisfunction isintended only for use when an internal db, not aregular dbfile that can be synced
toaclient.

e Permission to perform this operation depends on the credentids provided and the
‘acl_op_set acl_entry' entry within the ACL table of the dbfile.

« A dbfile name must begin with alower-case | etter and must contain only lower-case| etters, digits,
or underscores. Any dbfile name that begins with "zumero " is reserved for internal use.

 This function makes no changes to the SQL ite database attached to the connection in which it
is executed.

10.1.8. zumero_get_storage_usage_on_server()

Request information from the server regarding the size of dbfiles. Store the results in atemporary table.

zuner o_get _st or age_usage_on_ser ver (
server _url,
credenti al s_scheneg,
credenti al s_user,
credenti al s_password,

t enpt abl e
)
Parameter Description
server _url https://wherever/
credential s_schene credentials for this operation. auth scheme string.
credenti al s_user credentials for this operation. user name.
credential s_password credentials for this operation. password.
tenpt abl e the name of the temporary table to be created for the results

Return value: NULL
Notes:

» Permission to perform this operation depends on the credentids provided and the
‘acl_op_get_storage usage' entry within the zumero_config dbfile.

» Thetemporary table must not already exist.
» Thetemporary table will have two columns: dbfile (the name of the dbfile) and size (in bytes).

10.2. Functions without side effects

10.2.1. zumero_internal_auth_scheme()

Construct an "auth scheme string" for an internal auth db with a given name.

zuner o_i nt ernal _aut h_schene(dbfil e)

38

Reference: Functions

Parameter

Description

dbfile

name of the dbfile on the server

Return value: an authentication scheme string in JSON.

Notes:

» This function constructs a well-formed JSON authentication scheme string for an internal auth

db with a given name.

I NSERT | NTO z_ac

(schene, who, t bl , op, resul t) VALUES (

zuner o_i nternal _aut h_schene(' peopl e_we_di sli ke'),
zuner o_naned_const ant (' acl _who_any_aut henti cat ed_user'),

’
ok

zuner o_naned_const ant (' acl _result_deny'));

10.2.2. zumero_auth_scheme()

General-purpose function to construct an "auth scheme string".

zuner o_aut h_schene(schene_t ype, key, val ue, key,value, ...)

Parameter

Description

schene_t ype

required. the name of an authentication scheme type.

key

optional. the name of a key to place in the JSON.

val ue

optional. sort of. the value for the previous key argument.

Return value: an authentication scheme string in JSON.

Notes:

 This function must have an odd number of arguments. The initial scheme_type argument. After
that, the key/value arguments must bein pairs.

 Thisfunction constructs awell-formed JSON string for an arbitrary authentication scheme.

» Thefollowing function:;

zuner o_i nt ernal _aut h_schene('foo'),

will return exactly the same result as this one:

zuner o_aut h_schene('internal', 'dbfile', 'foo'),

e Thefarcical example:

zuner o_aut h_schene(' t el ephone', 'nunber', '719-555-1234"),

10.2.3. zumero_named_constant()

Conceptually similar to using C #definein SQL. Included for the purpose of making queriesmore readable.

This function allows you to write:

39

Reference: Functions

SELECT zunero_add_row_r ul e(
attached,
NULL,
zuner o_naned_const ant (' si tuation_nod_after_nod'),
zuner o_naned_const ant (' acti on_col uim_ner ge'),
NULL

JE
instead of:

SELECT zunero_add_row_rul e(
att ached,
NULL,
3,
8,
NULL
)

Available named constants:

 Conflict resolution actions:
 action_default
 action_accept
* action_ignore
« action_reject
e action_column_merge
e action_attempt_text merge

» Conflict resolution situations (row level):
 situation_del_after_mod
e Situation_mod_after_del
 situation_mod_after_mod

e ACL who:
e acl_who_anyone
e acl_who_any_ authenticated_user
e acl_who_specific_user
e acl_who_specific_group

e acl_op pull

e acl_op auth _add user

e acl_op auth set password
e acl_op auth set acl entry
e acl_op create table

e acl_op tbl_add row

e acl_op tbl_modify_row

e acl_op thl_add column

e acl_op add rule

e acl_op create dbfile

40

Reference: Functions

e ACL result:
e acl_result_deny
e acl_result_alow

10.3. Convenience

10.3.1. zumero_define_acl_table()

Convenience function to add an ACL table to the current db.
zuner o_defi ne_acl _tabl e(attached)
Roughly, thisis equivalent to:

CREATE VI RTUAL TABLE | F NOT EXI STS attached. z_acl USI NG zunero (
scheme TEXT
who TEXT
tbl TEXT
op TEXT
result TEXT
IE

Return value: NULL

Notes:

» Thetableisdefined with strict type checking.

 In addition to creating the table, this convenience function also inserts an ACL entry into it,
prohibiting anyone from adding columnsto z_acl itself.

I NSERT | NTO z_acl (scheng, who, tbl, op,result) VALUES (

zuner o_naned_const ant (' acl _who_anyone'),
‘z_acl',

zuner o_naned_const ant (' acl _tbl _op_add_col um'),
zuner o_naned_constant (' acl _resul t_deny'));

10.3.2. zumero_define_audit_table()

Convenience function to add an audit trail table to the current db.
zuner o_defi ne_audit _t abl e(attached)

Roughly, thisis equivalent to:

CREATE VI RTUAL TABLE attached.z_audit USI NG zuner o(
tbl TEXT NOT NULL
ancestor TEXT NOT NULL,
al ready TEXT
i ncom ng TEXT
result TEXT
IE

Return value: NULL

41

Reference: Functions

Notes:

* Do not INSERT or UPDATE anything in the z_audit table.

10.4. Adding conflict resolution rules

10.4.1. zumero_add_row_rule()

Add arow-level conflict resolution rule

zuner o_add_r ow_r ul e(

attached,

thl,

si tuati on,

action,

extra

)
Parameter Description
attached name of the attached database, usually 'main’
t bl name of the thl to which this rule applies. to make this rule apply to

any table, passNULL.

situation one of zumero_named_constant('situation_*")
action one of zumero_named_constant(‘action_*")
extra for future use. pass NULL.

Return value: NULL

10.4.2. zumero_add_column_rule()

Add a column-level conflict resolution rule. These only get used when the row-level situation was
'situation_mod_after_mod' and the row-level action was "action_column_merge'.

zuner o_add_col umm_r ul e(

attached,
thl,
col,
action,
extra
)
Parameter Description
attached name of the attached database, usually 'main’
t bl name of the thl to which this rule applies. to make this rule apply to
any table, passNULL.
col name of the column to which this rule applies. to make thisrule ap-
ply to any column, pass NULL
action one of zumero_named_constant(‘action_*")
extra for future use. pass NULL.

Return value: NULL

42

Reference: Functions

10.5. Misc
10.5.1. zumero_alter_table_add_column()

zuner o_al ter_tabl e_add_col um(
attached,
tbl,
col _def

)

Add a column to a Zumero table. This function exists because SQL.ite does not pass "ALTER TABLE
ADD COLUMN" down to avirtual table implementation.

Parameter Description

attached name of the attached database, usually 'main’
t bl name of the Zumero table

col _def column definition

Return value: NULL
Notes:

 After adding acolumntoaZumerotable, it isnecessary to closethe sglite db handle and reopeniit.

 ‘'whatever' must be acolumn definition which is compatible with SQLite'srestrictionsfor ALTER
TABLE ADD COLUMN™.,

10.5.2. zumero_adopt_existing_table()

zuner o_adopt _exi sting_t abl e(
att ached,
t bl

)

Convert aregular SQL ite table into a Zumero table.

Parameter Description
attached name of the attached database, usually 'main’
t bl name of the SQL.ite table

Return value: NULL
Notes:

* Itisan error to cal this function within an explicit transaction.
» Theregular SQLite tableis converted in place to become a Zumero table.

» Thisfunction usesthe samerulesas"CREATE VIRTUAL TABLE foo USING zumero", which
are somewhat stricter than the rules used by SQLite itself during a regular CREATE TABLE
statement. For a Zumero table, if you are going to use a SQL ite keyword as a column name, you
must make it a quoted identifier by putting double quotes around it. If the regular SQL.ite table
being adopted was originally created by taking advantage of SQLite's relaxed quoting rules, this
function will fail.

1http://www.sql ite.org/lang_altertable.html

43

Reference: Functions

10.6. Quarantine

10.6.1. zumero_quarantine_since_last_sync()

Quarantine and remove all changes since the last sync.
zuner o_quar anti ne_si nce_|l ast _sync(attached);

Return value: integer, the id of the quarantined package
This function allows you to non-destructively revert changes that the server has rejected.

If zumero_sync() fails dueto permission_denied, then the client's dbfile can never be sync-ed again unless
one of two things happens:

e The ACL isaltered to allow the sync
» Thedisallowed changes are reverted

Similarly, if zumero_sync() fails due to package rejected, then the client's dbfile can never be sync-ed
again unless one of two things happens:

e Theconflict rule is altered to allow the sync
» Therejected changes are reverted

10.6.2. zumero_restore_quarantine()

Try to restore a quarantine.

zuner o_r est ore_quar anti ne(attached, qid);

Parameter Description
qgi d quarantineid

Return value: NULL
Notes:

e Thequarantineid is returned by zumero_quarantine_since last_sync() or zumero_sync().
* If the contents of the package cause a constraint violation, this function will cause an error.

10.7. Destroying things

10.7.1. zumero_purge_history()

Purge rows that don't exist anymore.

zuner o_pur ge_hi story(attached);

Chapter 11. Reference: Error Messages

When afailure occurs during execution of a SQLite statement, Zumero may store additional information
in the error message string. At the C level, thistext is obtained by calling sql ite3_errmsg()1.

When this happens, the error message string will be of the form "zumero:identifier". For example:

zuner o: per m ssi on_deni ed

Identifier Description

authentication failed The Zumero server said the authentication credentials were invalid.
permission_denied The Zumero server denied arequest due to insufficient permissions.
package rejected The Zumero server rejected a package because a conflict resolution

told it to do so. None of Zumero's default conflict resolution rules
specify ‘action_reject’ as an action.

column_definition_mismatch During a sync operation, the incoming package tried to define a col-
umn which was already defined, and the new column definition did
not match the old one.

unique_constraint_violation An unresolved SQL unique constraint violation occurred on the
Server.

foreign_key_constraint_violation | A unresolved SQL foreign key constraint violation occurred on the
server.

check_constraint_violation A unresolved SQL check constraint violation occurred on the server.

http_400 The client received HTTP status code 400 from the server, indicat-
ing that the client's request was bad in some way.

http_406 The client received HTTP status code 406 from the server, but no
further information is available.

http_500 The client received HTTP status code 500 from the server, but no
further information is available.

http_other The client received an unsuccessful HT TP status code from the serv-
er, but no further information is available.

network_connection_failed The client was unable to make a network connection to the server.

invalid_argument An argument passed to a Zumero function was invalid.

invalid_dbfile_name The dbfile name provided wasinvalid. /\[a-z][az0-9]+%/

syntax_error There was a syntax error found when parsing a column definition.

conflict_clauses_unsupported Zumero does not support ON CONFLICT clauses.

table_rename_unsupported Renaming a Zumero table is not allowed.

table_drop_unsupported In the current version of Zumero, dropping a Zumero tableis not al-
lowed.

unrecognized_named_constant | zumero_named_constant() was called with a name that was not rec-
ognized.

no_dollar_sign in_table name |Zumero table names may not contain adollar sign ($).

invalid_auth scheme _string The auth scheme string passed to a Zumero function was invalid.

1http://www.sql ite.org/c3ref/errcode.html

45

Chapter 12. Frequently Asked Questions

Should | turn on SQL ite foreign keyswhen using Zumer 0?

Y es. Zumero's housekeeping tables use foreign keys to ensure data integrity. Using SQLite with
foreign keysturned ON is highly recommended.

Can | put other stuff in my sglitedb?

Y es, but Zumero will not synchronize it.

Can | sync only some of the Zumero tablesin a singlefile?

No. Sync happens at the granularity of one SQL.ite dbfile.

My Zumero server haslotsof dbfiles. Do | have to sync them all down to every device?

No. You can sync only the ones you want.

Can | modify the z$ table directly?

No. You should not modify the z$ table. All modifications should happen through the Zumero
virtual table.

Can | read data from the z$ table directly aslong as| don't modify anything?

Yes. You'll get exactly the same results doing SELECT FROM z$foo as you get doing SELECT
FROM foo.

Isthere any way to use a sglite file containing Zumer o tables without registering the Zumero ex-
tension?

Aslong as you are not modifying data, yes. You can SELECT directly from the z$ table.

How do | create a new dbfile on the server?

When you perform a zumero_sync(), if you provide a dbfile name which does not exist yet on
the server, it will be created.

| have a dbfile on the server but it doesnot exist yet on the client. How do | copy it down?

Create an empty SQL.ite db on the client and call zumero_sync().

How do | remove a conflict resolution rule?

Add one with 'action_default’. Thiswill override the previousrule.

46

Frequently Asked Questions

Why can't | declareacolumn in a Zumer o tablewhich hasaforeign key referenceto anon-Zumero
table?

Because the non-Zumero table is not synchronized to the other instances of the dbfile, so the
constraint is guaranteed to be violated.

How doesthe Zumero server storethings?

Normally, each SQL ite dbfile is actually stored in SQLite. However...

| want a Zumero server that integrates with my existing system. Does the Zumero server have the
ability to sync data into a some sort of a" big SQL" database instead of SQL ite?

Y es. Contact us for more information.

Can | retrieve new changes from the server (pull) without sending the unsynced changes on the
client (push)?

No. Each call to zumero_sync() will submit any and all pending changes from the client, after
which it will download changes from the server.

Does my SQL itefile on the client need to have the same name asthe dbfile on the server?

No. Zumero doesn't care (or even know) about the name of the SQL ite file on the client.

Can | drop a column from a Zumero table?

No. Thisis alimitation of SQLite itself. SQLite doesn't support ALTER TABLE DROP COL-
UMN.

Can | changethetype of a column in a Zumer o table?

No. Thisisalimitation of SQLiteitself. SQLite doesn't support ALTER TABLE ALTER COL-
UMN.

What isthat "t$tx" tablel seein my SQLitefile?

Zumero creates several housekeeping tables that are used to store the additional information nec-
essary to support synchronization. All of them are prefixed with t$ or z$.

Can | modify the stuff in those t$ tables myself?

Bad idea

Why is Zumer o so fussy about names of dbfiles?

For maximum compatibility with different platforms on which the server may be running.

47

Frequently Asked Questions

Can | sync one dbfile on the server with multiple SQLitefiles on the client?

Yes.

Can | sync one SQL itefile on the client with multiple different dbfiles on server(s)?

No. Bad idea.

What permissions are configured on a newly-installed Zumer o server?

Until adbfile named 'zumero_config' exists, anyone can create a dbfile. See Section 7.4, “ Secur-
ing anewly installed server”.

How do secure my server right after it isfirst installed?

Create a dbfile named 'zumero_config' containing an ACL table which specifies who is alowed
to create adbfile or not. See Section 7.4, “Securing anewly installed server”.

Can | storemy internal auth userstablein the same dbfile asother data?

WEell, yes, but you probably want to protected the internal auth db from anyone pulling it, which
means nobody could pull the other data either.

How do | set permissionson the ACL table?

AnACL tableprotectsitself. It makeslittle senseto have an ACL tablewhich anyone can modify.
It is good practice to add entries specifically designating who is allowed to add rowsto the ACL
table.

How do | accidentally open the permissionson my ACL table?

One good way isto insert an ACL entry for acl_op_thl_add_row while specifying *' as for the
tbl. This means anybody matching that entry can modify any table, including the ACL table.

What happensif | push apackagethat contains50transactionsand only oneof them causesa conflict
resulting in action_reject?

The entire package is rejected. The zumero_sync() operation has no effect except to return an
error code. Sync and conflict resolution happen atomically for the package being pushed. If you
want finer granularity, then sync more often.

Why ismy SQLite db so big?

Because when you DELETE a row from a Zumero table, it doesn't completely go away. See
Chapter 8, History for more information. Y ou can use the zumero_purge history() function to
reclaim space.

48

Frequently Asked Questions

| ran zumero_purge_history() but my database file didn't shrink. Why not?

The zumero_purge_history() function merely DELETESs things. Thisresultsin free pages within
the SQL.itefile, available for use. To actually shrink the file, you would still need to do a SQLite
VACUUM operation.

If I zumero_purge history(), doesthehistory get deleted in the server'scopy of thedatabaseaswell?

No. On the server, each database is kept with complete history information. There is no way to
purge that history on the server.

Can't | just configure Zumero to stop keeping history on the client?
No, but you can call zumero_purge history() after every sync if you want.

Also, for theinitial sync to retrieve adbfile from the server to an empty SQL.ite file on theclient,
you can use the zumero_pull_without_history() function instead of zumero_sync().

What does zumero_register() actually do?
The following things:

* Setup the Zumero virtua table using sglite3 create module v2()

Setup the Zumero functions using sglite3_create_function_v2()
* Register internal functions with sglite3_commit_hook() and sqglite3_rollback _hook()

PRAGMA recursive triggers=1,

What doesit mean if zumero register() returnsSQLITE_MISUSE?

Zumero requires SQL ite version 3.7.11 or higher. If the Zumero library is linked with an older
version of SQLite, zumero_register() returns SQLITE_MISUSE.

Can | use SQLite's special "integer primary key" columnswith Zumero?

In a word, yes. In far more words, see Section 5.2.5, “SQLite "INTEGER PRIMARY KEY"
columns’.

How do | delete a dbfile on the server?

(LATER) Currently, you can't.

Doesthe Zumero SQL ite extension support UTF-16?

(LATER) Currently, no, it only supports UTF-8.

Does Zumero internal auth support the concept of " groups’ within a single auth dbfile?

No.

49

Frequently Asked Questions

What'sthis" zumero_config" dbfilel found?

It contains settings for your Zumero server.

Can | give my dbfilesnamesthat start with " zumero " ?

No. Any dbfile name that begins with "zumero " is reserved for internal use.

Are permissions enforced on the client?

No.

How do | convert aregular SQLitetableinto a Zumero table?

Use zumero_adopt_existing_table().

IsZumer o open sour ce?

No.

How are passwords stored in an internal auth db?

berypt?

How can | delete a user from an internal auth db?

For security reasons, you can't. If you delete user Eddie and somebody later creates user Eddie,
that new Eddie would inherit the permissionsfrom all the ACL entries referencing the old Eddie.

So can | deactivate a user, or somehow make sureit cannot be used for login anymore?

Yes. Just set its password to something impossible to guess, and then forget the password.

SELECT zunero_internal _aut h_set password(
"https://server',
"aut h_dbfil e_nane',
credenti al s_scheneg,
credenti al s_user nane,
credenti al s_password,
'nane of user to deactivate',
| ower (hex(randonbl ob(16)))

B

1http://en.wi kipedia.org/wiki/Bcrypt

50

Frequently Asked Questions

Why the name " internal auth" ?

The Zumero server was designed to make it easy to integrate with existing authentication sys-
tems like LDAP. In those cases, Zumero is not managing the the directory information -- it is
simply contacting the authentication provider to validate credentials. In contrast, the "interna
auth" scheme is called "internal” because it is a smple way of keeping user information inside
Zumero itself.

Is Zumero compatible with my version of SQL ite?

Zumero requires SQLite 3.7.11 or later, which is preinstalled with iOS 6, Android Jelly Bean,
and Windows RT. For older rel eases of these mobile operating systems, you should build amore
recent version of SQL ite with your app.

At thetime of thiswriting, the front page of the official SQLitewebsite (sglite.org) says: "Current
Status: Version 3.7.15.2 of SQLite is recommended for all new development. Upgrading from
all other SQL.ite versions is recommended." We concur with this recommendation. Whenever
possible, use the latest version of SQLite with Zumero.

Why doesn't (CREATE VIRTUAL TABLE USING zumer o) accept column namesin single quotes
like SQL ite does?

Even the SQL ite developers wish they had never done this. In SQL, single quotes are for string
literals and double quotes are for identifiers. SQLite's parser does accept string literals as iden-
tifersin certain cases, but thisis not standard SQL. Zumero does not duplicate this undesirable
behavior.

In the SQL ite shell app, why does.dump look so funny when using Zumer o tables?

A Zumero table is a virtual table implemented by several regular SQLite tables underneath.
The .dump command treats virtual tables specially, providing only the instructions necessary to
setup thevirtual table. For each of the underlying regular SQL itetables, .dump doeswhat it would
normally do. Theresult isthat for aZumero table named foo, its records show up in .dump output
as z$foo.

How are Zumero's conflict resolution featuresrelated to SQLite's”" ON CONFLICT" clauses?

Thesetwo things are completely unrelated. With Zumero, "conflict resolution” refersto therecon-
ciciliation of multiple changes during synchronization. The SQLite "ON CONFLICT" clauses
refer to the way SQL.ite performs error handling on certain kinds of constraint violations.

Why do several of the Zumer o functions accept afirst argument that always seemsto be 'main’'?

That argument specifies the name of the SQLite attached database where the operation should
take place.

Background: SQL ite allows multiple database filesto be attached to a single database connection.
Each one hasaname. In addition to any databasesyou might attach explicitly (usingthe ATTACH
command), there are two databases that are aways available: 'main’ (the main database) and
'temp’ (the database used for temporary tables).

51

Frequently Asked Questions

In most SQL statements (like INSERT, UPDATE, etc), you can explicitly reference atablewithin
a specific database by using "database.table” syntax. Or, you can omit the database qualifier and
SQL itewill search the attached databases, in the order in which they were attached, for amatching
table, accepting the first match it finds. In practice, if you omit the database name, and if thereis
amatchin'main’, then that match will always be found, since 'main' was attached to the database
connection before any other databases.

The Zumero functions which need to know a database name require you to specify it explicitly.

Can| ROLLBACK azumero_sync()?

No. In fact, zumero_sync() may not be called from within an open transaction. It will manage its
own transaction to ensure the sync process is atomic.

Do | haveto hard-code the password for Zumero server into my maobile app?

No. Definitely not.

When your server was installed, you were asked to provide a password for the ‘admin’ user. You
should think of your ‘admin’ user like 'root' on a Unix system, or an Administrator account for
Windows. It is mostly used for administration, initial setup, and to create other users that will be
endowed with fewer privileges.

What credentials should user s of my mobile app use when contacting the server for sync?

That's your decision, but atypical approach would be to allow usersto self-register by creating a
new user name within an internal auth dbfile, the members of which are given limited privileges.

» Create an internal auth dbfile. Let's call it "people”.

» Configure the ACL on "people" to alow anyone to create a user within it. Thisis the
only operation that can be performed by an unauthenticated client of your server.

» Assign limited privileges to members of "people” as needed.

Why doesn't zumero_sync() work? | know there are changes on my server that zumero_sync() isn't

getting.

Sometimes zumero_sync() returns only part of the changes you need, in which case, you need to
call it again. The return value from zumero_sync() is a semicolon-separated list of integers. The
first integer is the one you need to check. If it's zero, your sync was complete. If it's non-zero,
you should call zumero_sync() again to retrieve more.

What is'zumero_users admin'?

Aninternal auth dbfile which is created during installation of a Zumero server.

Should | add all my usersto'zumero_users admin'?

No. Thisinternal auth dbfile should be used only for users who need administrative privileges.
To create other users, create anew dbfile (name it whatever you want) and add usersthere. Then
add privileges for those users by inserting ACL entries wherever is appropriate.

52

Glossary

accept

action

authentication scheme
column merge

dbfile
ignore

interna auth

package

reject

situation

A possibleaction for adataconflict: Accept the change from theincoming package
in favor of whatever change was previously there.

An instruction which tells the Zumero server how to resolve a conflict.

Describes a specific provider of authentication. Represented as a JSON object
which contains a "scheme _type" key plus any other name/value pairs necessary
for that scheme type.

A possible action for arow-level mod_after_mod conflict: Attempt to resolve the
conflict on a column-by-column basis.

Essentially a synonym for "SQL ite database file".
A possibleaction for adataconflict: Ignorethe change from theincoming package.

A type of authentication scheme where a Zumero dbfile can be used for authenti-
cation by the Zumero server.

A set of changes being sent between the client and the server during sync.

A possible action for a data conflict: Reject the entire package, causing the sync
operation to fail.

One of the three main possible scenarios for arow-level conflict: del_after_mod,
mod_after_del, mod_after_mod.

53

